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Abstract

In open dynamic multi-agent environments the number of agents can vary significantly within very
short periods of time. Very few (if any) current multi-agent systems have, however, been designed to
cope with large-scale distributed applications. Scalability requires increasing numbers of new agents and
resources to have no noticeable effect on performance nor to increase administrative complexity. In this
paper a number of implications for techniques and management are discussed. Current research on agent
middleware is briefly described.

1 Introduction

Agents, from an Al perspective, are autonomous, pro-active, reactive, and social entities [16]. They need to
be able to communicate with other agents, and interact with the rest of the world (data repositories, objects
in a virtual environment, etc.). They may be mobile, thus requiring a notion of location. They may or may
not have a name or traceable owner. Agents, from a Computer Systems perspective, are (multi-threaded)
processes (or sets of processes) that may migrate from one machine to another.

Ideally, multi-agent systems are hghly dynamic open systems, with an ever-changing population of
agents: new agents emerge (or are created), existing agents die, move, learn/forget etc. The dynamics of
such systems are hard to predict. The number of agents in large scale distributed applications such as e-
business applications (virtual shopping malls and auctions), Internet-wide data warehouses, and navigation
systems, can vary considerably over time. The systems need to be able to scale (in terms of the number of
agents and available resources) almost immediately without noticeable loss of performance, or considerable
increase in administrative complexity [21].

This problem of scalabilty is not an Al problem in itself. It is a problem with which the distributed
computing community is still wrestling. A solution requires collaboration between these two disciplines.
This paper addresses some aspects of this problem (security, for example, is not addressed). Section 2
provides an overview of the current status of multi-agent frameworks with respect to scalability. Section
3 discusses scaling techniques and agent management. Section 4 discusses different services with which
agents can be located. Section 5 outlines our current work on an agent operating system.

2 Existing multi-agent frameworks

Scalability is an important, yet under-researched, aspect of agent platforms. This is partly due to the current
status of agent technology. A large volume of research focuses on the development of intelligent agents
that are able to communicate with other agents, interact with an external world, be autonomous, and react
to their environment. A number of multi-agent frameworks/environments have been developed to construct
multi-agent systems, but not for systems with (very) large numbers of agents.

One aspect of current research on multi-agent systems is that a large system is deemed to consist
of hundreds of agents, maybe a thousand, but not millions. The claim that Auctionbot is scalable, for
example, is supported by an experiment with only 90 agents [39]. Larger numbers of agents require scalable
development frameworks and support environments.



The term “scalability” is not always used to refer to architecture, services and performance. In some
cases it is used to refer to scalable functionality. For example, the SAIRE approach [23], claims to be
scalable because it supports heterogeneous agents. Shopbot [9] claims to be scalable because its agents
can adapt to understand new websites. In both cases, the term is extensibile functionality would seem to be
more appropriate.

Researchers and developers of multi-agent frameworks are beginning to realise that scalability is an
issue. A number of multi-agent frameworks (e.g. DECAF [17], InfoSleuth [22], April [20], AgentTcl [14],
JAFMAS [7], Plangent [24] DESIRE [4]) do not seem to address the problem of scalability at all.

Other multi-agent frameworks rely on another framework to solve the problem of scalability. For
example, scalablity in the CoABS (DARPA Control of Agent Based Systems) approach [32] assumes
adequate support from computational grids in providing a plug-in backplane for agents [11].

In other multi-agent frameworks, aspects of scalability are specifically addressed. In ZEUS [38] scal-
ability is defined to be the growth rate of the maximum communication load (as a function of the number
of agents). Their conclusions are that the maximum communication load grows at worst linearly with the
number of agents. This addresses a loss of performance problem, and is a step towards developing scal-
able multi-agent frameworks. In OAA (Open Agent Archiecture) [19] matchmaking agents are described
which can handle larger number of agents. The RETSINA MAS infrastructure [31] is designed to support
multi-agent systems that run on a number of LANSs and to avoid single-point of failures (e.g., in agent name
services).

Turner and Jennings [34] propose to (automatically) change the organization of agents in the multi-
agent system to handle an increase in the population of a multi-agent system. For example, more middle
agents or matchmakers are introduced to reduce overhead. Their approach is a possible step towards
addressing administrative problems related to scalability.

None of the aformentioned approaches addresses minimizing the loss of performance as well as mini-
mizing administrative overhead.

Research on specific services in multi-agent systems such as directory services also address scalability.
The approach taken by Shehory [29] is an example in which agents locate agents based on each agent’s
own caching lists of agents they know. The theoretical analysis is based on a population of size 10,000; no
experiments have yet been conducted.

3 Managing scalability

Scalability problems generally manifest themselves as performance problems. This section describes well-
known techniques that can tackle these problems. Administrative complexity in the form of agent manage-
ment issues is also briefly discussed.

3.1 Scaling techniques

Three scaling techniques are discussed which may be used to minimise loss of performance: (1) hiding
communication latencies, (2) distribution, and (3) replication.

Hiding communication latencies is applicable in the case of geographical scalability, that is, when an
agent system needs to span a wide-area network. To avoid waiting for responses to requests that have
been issued to remote agents or services the requesting agent is programmed to do other useful work.
This approach does require that an agent can be interrupted when the expected response (if any) is to be
delivered.

Distribution generally involves partitioning a (large) set of data into parts that can be handled by sepa-
rate servers. A well-known example of distribution is the natural partitioning of the set of Web pages across
the approximately 25 million Web servers that are currently connected through the Internet. Other examples
of distribution include the vertical or horizontal partitioning of tables in distributed databases [25].

When considering large-scale networks like the Internet it becomes crucial to combine distribution
with latency hiding. Unfortunately, this is not always possible, for example when an agent simply needs an
immediate response.



A third, and widely applied technique is to place multiple copies of data sets across a network, also
referred to as replication. The underlying idea is that by placing data close to where they are used, commu-
nication latency is no longer an issue, so that agent-perceived performance is high. Having multiple copies
means that such performance is good for all agents, no matter where they are located.

Unfortunately, replication introduces a serious problem. Whenever a replica is updated, that replica
becomes inconsistent with the other replicas. Matters become worse when multiple concurrent updates
need to be carried out simultaneously, because all replicas have to be the same after all updates have
been processed. Keeping replicas consistent introduces a consistency problem that can be solved only by
means of global synchronization. However, global synchronization in a large-scale network is inherently
nonscalable, as it requires communication between all parties that are to be synchronized.

The only solution to the consistency problem is to allow replicas to be somewhat out of synch with
respect to updates. In other words, a weak consistency model is adopted. The form of, and to what extent
weak consistency can be tolerated is highly application dependent. As a consequence, scalable multi-
agent systems will need to support configurable and perhaps even adaptive replication strategies. No single
strategy will show to be optimal under all conditions. Even for relatively simple systems such as the Web,
differentiating strategies can make a lot of difference [26].

3.2 Agent Management

In a multi-agent system spread across a large-scale network with a vast number of agents possibly roaming
from node to node, a massive management problem is caused solely by the scale of the system. Two
related issues are discussed in this section: (1) the extent to which agents know each other (also referred to
as referential coupling), and (2) orphaned agents, that is, agents that are no longer “in use” and cannot be
traced back to an owner.

3.2.1 Referential Coupling

An important concept in agent-based distributed systems is the coupling between agents. Cabri et al. [5]
make a distinction between temporal coupling and referential coupling (referred to as spatial coupling).
Referential coupling is about whether agents explicitly refer to each other, or that they can otherwise
remain anonymous. Temporal coupling deals with the issue whether two or more agents can communicate
only if they are all up and running. When it comes to management issues, it is mainly referential coupling
that is important.

In referentially coupled systems, agents explictly refer to each other. As a consequence, references
need to be systemwide unique, but may also need to be true identifiers [37]. A true identifier is a reference
that cannot be reused and is associated with exactly one agent. In addition, each agent can have at most
one true identifier. Generating true identifiers is practically feasible. However, the real problem lies in
the dereferencing process, that is, resolving a reference to the current address of the associated agent. If
agents are not allowed to move, resolving a reference is relatively easy: its current address is encoded in
the reference. For mobile agents, matters may become exceedingly difficult, as explained below.

In referentially uncoupled systems, agent communication is anonymous. Anonymity has the advantage
that the system does not necessarily need to keep track of an agent’s current location. However, it does
introduce the problem how communication and agent coordination should be realized. There are basically
two approaches to support anonymous communication and coordination.

First, a publish/subscribe mechanism can be used, using what is known as subject-based addressing. In
this approach, an agent is allowed to publish a message by attaching a subject to it. Agents that are inter-
ested in messages on a specific subject should subscribe to that subject. The underlying communication
system ensures that published messages are delivered to their subscribers. The technique for this matching
is either based on network-level multicasting (as in TIBCO/Rendezvous [33]), application-level multicast-
ing [3], flooding [8, 18], or by means of a network of brokers (as in IBM MQSeries [15]). Obviously, each
of these approaches has its own scalability problems.

A second approach to support anonymous communication and coordination is to make use shared datas-
paces that are based on generative communication [13] such as JavaSpaces [12]. These shared dataspaces
implement an associative memory that can also be used for searching and matching agents, as discussed



below. Building efficient implementations for local-area networks is already difficult; large-scale wide-area
multi-agent systems make matters worse [28]. There are no obvious solutions.

3.2.2 Orphaned Agents

Returning to referentially coupled systems, there is another intricate management problem that needs to
be addressed within a large-scale MAS. If agents explicitly refer to each other, it becomes relatively easy
to impose a (possibly hierarchical) structure by which one agent is responsible for managing other agents,
notably its siblings. Management in this context generally refers to life cycle management: creating and
destroying agents. However, what happens to an agent that is no longer referenced by other agents?

In many ways, this problem is akin to garbage collection in distributed systems [1], a notoriously hard
problem to solve when there are many (passive) objects floating around. Considering that agents act au-
tonomously, the situation becomes somewhat different. For example, a (possibly temporarily) anonymous
autonomous agent that is actively collecting information should most likely be allowed to survive. How-
ever, it is probably not acceptable to allow such an agent to live forever in a more or less anonymous
way.

A solution to collecting “garbage” agents, that is, agents that are no longer useful, is to make use of
leases. A lease is essentially a contract that allows an agent to continue its work (even anonymously) until
the lease expires. At that point, the host on which an agent is executing has the right to exterminate the
agent. A lease-based approach to garbage collection in large-scale distributed systems has shown to be
practically feasible. Agents should be allowed to extend their lease. Note this approach may also work in
referentially uncoupled systems.

4 Scalable services

Many scalability problems in large-scale distributed systems, including agent-based systems, are related to
limited scalability of searching and matching facilities. Unfortunately, some of these problems are inher-
ently nonscalable and can be tackled only by considering the application for which agents are developed.
In the following, the types of problems involved are discussed.

4.1 Names, ldentifiers, Attributes, and Addresses

Naming plays an important role in any distributed system. Names are used in many different ways, but their
main purpose is to facilitate matching and communication. Four different types of names are distinguished:

Human-friendly name: This type of name is a character string to be used by end users for looking up
objects and agents. A typical example of such names are URLS as used in the Web.

Identifier: An identifier is generally a name intended to be read by machines only. As discussed above,
identifiers are often used as unique references to objects and agents.

Address: An address is a name that specifies exactly where and how an object or agent can be contacted.
As such, it describes a location, but often implicitly also the protocol through which communica-
tion can take place. In the Domain Name System (DNS), a human-friendly name is translated to a
network-level address associated with the Internet protocol (IP).

Attribute: An attribute is a descriptive name, associated with one or more values, and is used to describe
a property of an object or agent. Attributes are mostly used to assist searching for an object using
only partial information on the properties that the returned object should have.

Given these types of names, scalable naming in multi-agent systems is generally concerned with two
issues. The first issue is how to efficiently resolve a human-friendly name or an identifier to an address.
The second issueis how to accomplish efficient attribute-based searching or matching. Different scalability
problems relate to each of these issues.



4.2 Scalability in Naming Services

A naming service such as DNS is used to resolve a human-friendly name to an address. DNS can scale
to millions of names by physically distributing the name space across multiple servers, and applying a
simple name resolution mechanism. As an example, consider resolving the name www.cs.vu.nl. This name
is handled by at least three name servers. A DNS root name server is capable of resolving the name nl,
for which it returns the address of the name server that can handle names in the nl domain. Using this
address, and agent can request name resolution of www.cs.vu, which will return the address of the name
server handling the vu domain. In turn, the vu name server can be asked to resolve www.cs for which it
returns the address of the cs name server. The latter, finally, knows the address of the Web server named
WWW.

True scalability of DNS comes from the fact that name-to-address mappings are extensively cached by
all name servers. In other words, DNS internally makes extensive use of replication. This replication does
not lead to inconsistencies as described above, for in most cases name-to-address mappings hardly ever
change. In other words, updates are rare compared to lookups.

Unfortunately, when dealing with mobile agents, DNS cannot be used to locate an agent because name-
to-address mappings are no longer stable. Instead, whenever an agent moves to another location, it update
its address, thereby changing the name-to-address mapping. Other solutions are necessary.

4.3 Scalability in Location Services

As an alternative to using a naming service, specialized location services have been constructed. A location
service is tailored to maintain identifier-to-address mappings, and assumes that these mappings change
regularly. There are various approaches to efficiently locating mobile agents [27], but only few can actually
scale worldwide and can support arbitrarily migrating agents.

As it turns out, special attention needs to be paid to adding an efficient location service to a large-
scale multi-agent system. In our own work on wide-area distributed systems, a distributed search tree has
been constructed that can dynamically adapt itself to the migration pattern of an individual agent [35]. A
coupling between human-friendly names and addresses of mobile agents is described in [2]. Any naive
solution to locating mobile agents in a large-scale multi-agent system that needs to support highly mobile
agents can only fail. It is beyond the scope of this paper to go into further details, but the interested reader
is referred to [27] for further information.

4.4 Scalability in Directory Services

Naming and location services are difficult to scale, but nevertheless solutions exist that can be used in large-
scale multi-agent systems. Matters become harder in the case of attribute-based searching and matching.
Scalable attribute-based searching and matching falls into the category of building scalable directory ser-
vices [30]. The canonical example of a wide-area directory service is LDAP (Lightweight Directory Access
Protocol). LDAP servers form a simplified implementation of X.500 directory services and currently de-
ployed in modern distributed systems such as those based on Windows 2000 [6].

In its simplest form, an agent submits a query to a directory service in the form of a boolean expression
in which each term is an (attribute, value) pair. The service returns a list of references to objects (or agents)
that match the query. In other words, a returned object has its attribute values set according to the query as
submitted by the agent. What makes a directory service so difficult to scale, is that to construct the list of
matching objects, it is, in principle, necessary to search the entire set of objects that are registered by the
service.

To circumvent such an exhaustive search, the only approach that can be followed is to build an index
of mappings from attribute values to object references. Only in this way will it become possible to imme-
diately identify the objects that match a query. Unfortunately, building and maintaining such an index on a
worldwide scale is infeasible.

Solutions to general-purpose worldwide scalable directory services do not exist. At best, specialized
directory services can be built that restrict the type of query that can be submitted, or limit the set of



(attribute, value) pairs. An example of such a limited directory service is JavaSpaces, but as argued above,
even there severe scalability problems exist.

Again, a difficult and challenging problem exists, for which presumably only application-specific solu-
tions will work.

5 Agentscape

AgentScape is a focus of current research. It is a system that currently being designed as a worldwide
distributed, scalable, secure, and extensible agent framework. It aims to provide support in two ways.
First, support is provided on the level of a basic agent operating system. Second, support is provided by
services, such as location and directory services, automated creation of agents, and management of agents,
objects, locations and groups. AgentScape provides basic building blocks which can be extended and build
upon by application developers.

5.1 AgentScape Operating System

AgentScape is a basic agent middleware system, intended to be usable for a wide range of multi-agent
applications. As middleware, it offers primitives on the level of agents, shielding application developers
from details at lower levels. In a sense, AgentScape is similar to UNIX. Within UNIX, everything is a file,
on which operations are defined. Within AgentScape, two main concepts are distinguished: agents and
objects. An agent is an active process, while an object is passive. Operations are defined on agents, akin to
file operations in UNIX: move (mv), change owner (chown), change group (chgrp), change security modus
(chmod), create, remove (rm), etc. Similar operations are defined on objects. Unique to AgentScape is
the use of objects that are physically distributed across multiple machines, and that encapsulate their own
distribution strategy. These objects are adopted from the Globe wide-area distributed system [36].

An important issue for AgentScape is that its model of agents and objects enable scalable solutions. In
our approach, agents are expected to be mobile and can be implemented in different ways. This approach
allows for implementing applications that require a high degree of interoperability across heterogeneous
platforms. For a similar reason, our objects have self-managing capabilities. In contrast, most distributed-
object models are based on remote objects in which the object state is not distributed, and is managed by
the server the object is located [10]. Clients are only provided transparent access to an object through a
proxy.

A default version of AgentScape will be present in every application using our middleware (akin to the
presence of an operating system kernel). However, the middleware itself will be highly extensible to allow
for application-specific solutions.

5.2 AgentScape Services

An agent operating system intended to be used in a worldwide setting needs services, for example, to
enable retrieval of agents. Specific directory services are provided, with which agents, distributed (and
possibly replicated) objects, and groups of agents or objects can be found. Another service is a multi-agent
factory with makes automated agent creation and modification possible. Finally, management services
are provided to reactively and pro-actively control agents, objects, locations, and groups in AgentScape.
The challenge for these services is that they need to be scalable across a worldwide network and they can
support vast numbers of agents and objects.

6 Final Remarks

In this paper, we have addressed some important design issues for scalable multi-agent systems. To build
worldwide distributed agent-based systems, we argue that the real challenges lie in solving the scalability
problems mentioned in this paper. Unfortunately, there are no obvious solutions, so what is needed is
middleware that can support a myriad of solutions, each probably tailored to specific application domains.



If these problems are not solved, the road to large-scale agent deployment will be exceedingly difficult to
follow.
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