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Abstract

Middleware for modern of®ce environments and many other application areas needs to provide support for a myriad of different, highly

mobile objects. At the same time, it should be able to scale to vast numbers of objects that may possibly be dispersed over a large wide-area

network. The combination of ¯exibility and scalability requires support for object-speci®c solutions that is hardly addressed by current

object-based systems such as CORBA. We have developed a middleware solution that seamlessly integrates traditional remote objects with

physically distributed objects that can fully encapsulate their own distribution strategy. We describe how this integration takes place, and

how it can be applied to existing systems such as CORBA. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

People in many of®ce environments are no longer ®xed to

a speci®c location. Instead, they carry their own mobile

devices, such as a laptop, connect to the local infrastructure

at an arbitrary point, and expect to continue their work

where they left off. The traditional notion of an of®ce is

thus gradually being replaced by that of a virtual, highly

personalized of®ce that an individual connects to as he or

she moves from location to location. Such a virtual of®ce is

supported by devices such as personal digital assistants,

smart cards, notebooks, and so on. The working environ-

ment of an employee in such an of®ce will simply appear to

travel along as that person moves.

One approach to implementing such virtual of®ces is to

statically con®gure a number of servers in a network, and

allow clients to access those servers from very different

locations using a myriad of access devices. However,

there are several drawbacks to this approach, the most

important one being the lack of ¯exibility. In practice,

resources and services in many of®ce systems change

rapidly in number and functionality. Also, the underlying

infrastructure by which those resources and services can be

accessed is continuously changing.

As a simple example of the need for ¯exibility, consider

the implementation of a company's intranet Web site. Until

recently, it was common practice to construct such a site by

means of a server that has access to the local ®le system

containing the HTML pages comprising the site. In addition,

user interaction was supported through CGI-BIN scripts. At

present, a shift is taking place through Content Delivery

Networks (CDNs) which offer Web hosting services that

can replace a company's traditional Web server. At the

same time, the traditional notion of Web servers is changing

as Web services become accessible on small-scale devices

such as PDAs [3].

The components that comprise a user's working environ-

ment are thus seen to be highly dynamic in time and space.

Basic resources and services such as printers, CPUs,

storage, access devices, and so on, change as the user

moves. Also, components that make those resources and

services available, as well as the applications that are part

of the working environment, change in a similar fashion.

Any system that is to support future virtual of®ces, or

similar environments, will thus need to accommodate

mobility in the broadest sense of the word. Users should

be able to move easily between locations implying that

they should equally well be easy to locate when needed.

Components that comprise a user's environment should be

able to migrate, and be traceable as well. Likewise, ®nding

and binding to the appropriate resources and services to

accommodate a user's environment at a speci®c location

should be easy to do. For example, a roaming user who
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wants to print his e-mail should be able to do so without

having to (manually) con®gure his notebook for the type of

printer that happens to be locally available. What we are

thus looking for is ¯exibility.

Middleware can offer the ¯exibility we are seeking in

such environments. However, current solutions, be they

based on a middleware approach or not, fail to adequately

address scalability. At best, they allow transparent access to

remote resources. However, when applying scaling tech-

niques such as caching and replication, they generally

support only a few policies. Such an approach is inadequate

for large-scale systems. Not only are we faced with

problems regarding the sheer amount of data and number

of people that need to be supported, problems are also

complicated by the fact that in many cases, people and

resources may be dispersed across a wide geographical

area. Further complications are caused by the highly

dynamic nature of data, people, devices, functionality, and

media, both in time and space. What is needed is support for

resource-speci®c solutions; a single one-size-®ts-all

approach will not do.

This paper describes the integration of two middleware

solutions, CORE and Globe, that jointly address the ¯ex-

ibility and scalability issues that are needed in future of®ce

environments. CORE is a CORBA-like middleware layer

which has been designed to support highly mobile objects,

tailored to of®ce environments. Globe too is a middleware

system, but instead of concentrating on mobile objects, its

designers concentrated on supporting highly replicated and

widely distributed shared objects. As Globe is already

described extensively elsewhere (see, e.g. Ref. [26]), we

restrict ourselves only to describing its most relevant

properties.

The main contribution of this paper is that we show how

CORBA-like systems, such as CORE, can be extended in

such a way that scalability problems can be more effectively

tackled. Part of our approach is to adapt the remote-object

model allowing objects to be physically distributed, while at

the same time fully encapsulating their own distribution

strategy. The adaptation does not affect existing interfaces.

We start by describing CORE, an object-based middle-

ware system whose object model strongly resembles that of

CORBA. The objects as used in CORE need to be enhanced

to support object-speci®c distribution, as we explain in

Section 3. Details on these enhancements are discussed

separately in Section 4, where we concentrate on keeping

enhancements transparent to existing applications. We

conclude in Section 5 by re¯ecting on our work and

compare it to work by others.

2. The architecture of CORE

CORE is a middleware platform aimed at mobility. To

enable objects to be highly mobile, instead of only having

portable code, CORE mobile objects are written in Java.

There are Java Virtual Machines (JVMs) available for

most processing devices. Another key property of CORE

is the small footprint. As the target environment contains

many devices with limited processing power and resources,

CORE should claim minimal resources.

2.1. Global architecture

A CORE system consists of a heterogeneous network of

machines, which together form a distributed system. Each

machine runs a number of services Ð hardware or software

entities that can perform a speci®c task. To enable commu-

nication between services on different machines and to

provide some basic functionality, such as lookups of

services, a small piece of middleware runs between the

operating system and the services. This piece of middleware

makes network access and location of services transparent

to both the user and the programmer of services.

As most other object-based distributed systems such as

CORBA [23] and Java RMI [24], CORE uses a remote-

object model. In this model, an object is placed in the

address space of a single object server. The object server

exports the object's interfaces to remote clients, allowing

them to invoke the object's methods. The interface imple-

mentation at the client is called a proxy [22]. A proxy

marshals a method invocation into a message that is sent

to the object server. An incoming invocation request is then

unmarshaled at the server, after which the method is

invoked at the object, as shown in Fig. 1.

The object is identi®ed by a globally unique object iden-

ti®er, referred to as a CORE OID. A CORE OID is a true

identi®er [31]. In particular, it contains no location informa-

tion. In addition, each of the services offered by the object

by means of its interfaces are identi®ed by a separate service

ID. Given a service ID, it is possible to look up the object

that provides the identi®ed service. A service ID is some-

what comparable to an interface identi®er in CORBA or

DCOM [5], except that it is also uniquely tied to an object.

In CORE, no assumptions are made concerning the loca-

tion of an object. Objects are allowed to move freely

between servers on possibly different machines. When an

object moves to a different server, the proxy is responsible

for reconnecting to that server. Likewise, the proxy is

responsible for masking failures as much as possible,

although fatal errors such as crash failures or persistent

communication failures may raise an exception at the client

(see also [29]). When a method is invoked during the migra-

tion of the object to another server, the invocation is queued

until the object is up and running again. The object itself is

not aware of any of its proxies. In our current implementa-

tion, strong consistency is guaranteed by forbidding the

proxy to cache results of method invocations.

2.2. CORE platform

A CORE-based distributed system consists of a collection

of interconnected hosts, where each host executes a number
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of basic CORE components. These components collectively

form the CORE Runtime System (RTS). Each host can run

one or more CORE processes. Each process can be accessed

through its transport-level address, that is, an (IP address,

port number)-pair. The CORE RTS at each process partly

consists of the Voyager object broker,1 along with CORE

extensions that allow the process to, for example, commu-

nicate with other CORE processes. This organization is

shown in Fig. 2, and is explained next. In the following,

the most important CORE components are discussed.

2.2.1. Registry

The Registry is used to register (and unregister) objects

locally, including the basic CORE components that are part

of the platform. The registry also keeps some usage infor-

mation on each object, such as the number of times it has

been invoked, the last time it was invoked, etc. Registration

of an object proceeds by providing its interfaces to the

registry. Subsequent lookups are done by means of the

registry as well, possibly with the help of other CORE

components that we discuss below.

2.2.2. Distribution manager

CORE objects are accessible to remote clients. To that

end, a client must bind to an object by locally installing a

proxy for each object it wants to invoke. Installing a proxy is

done automatically by uploading it to the client as we

describe below.

As we explained, proxies are object speci®c. In CORE,

objects themselves are responsible for creating and handing

out proxies to their clients, but for this they can make use of

a number of CORE services. The Distribution Manager

(DM) is such a service. This component can be called by

an object with the request to generate a proxy object imple-

menting one or more of the object's interfaces. The proxy

contains the object's CORE OID, as well as a reference to

where the object currently resides.

A proxy can be serialized and handed out to a client.

Serialization is the process by which an object is represented

as a host-independent series of bytes. Such a series can be

safely transferred between different hosts. When a host

receives a serialized object, it can deserialize it into a repre-

sentation speci®c for that host.

2.2.3. Service and user agent

The Service Agent (SA) and User Agent (UA) are two

related components. An SA is responsible for registering

services at remote platforms, whereas a UA is responsible

for looking up services at remote platforms. The implemen-

tation of these agents is based on the Service Location

Protocol (SLP) described in RFC 2165.

An SA maintains a list of descriptions of currently avail-

able services at various CORE platforms. In essence, each

description takes the form of an (attribute, values)-pair and

is normally provided directly by the objects themselves. An

SA is responsible for broadcasting removals of service

descriptions, and also continually listens to requests and

updates coming in over the network.

To look up a service, a UA will broadcast a system-wide

lookup request by specifying a predicate formulated in

terms of these (attribute, values)-pairs. Predicates are

similar to LDAP queries [28]. They are formulated as

Boolean expressions in which each term consists of an

(attribute, values)-pair, specifying the required values for

that attribute. When a lookup request comes in, the SA tests

the associated predicate against all descriptions in its list and

returns the IDs of each service of which the description

matches the predicate. The UA collects replies from SAs

(containing service IDs) for some period of time or until it

has received the requested number of services.

It is thus seen that the SAs jointly maintain a distributed

database of service descriptions. However, broadcasting as
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is done in CORE has inherent scalability problems. To solve

these problems, more sophisticated techniques are neces-

sary. For example, the distributed database could easily be

replicated to facilitate local lookups by UAs. This approach

is feasible as the set of services is expected to be relatively

stable. In other words, the mapping between (attribute,

values)-pairs and service IDs of the corresponding inter-

faces will not change often. In addition, it is not necessary

that the SAs always share the exact same view of available

services. The combination of relative stability and weak

consistency allows us to use highly scalable techniques

such as deployed in epidemic algorithms [4,21].

2.2.4. Locator

The Locator locates an object with a speci®ed CORE OID

on behalf of a client, and takes care of binding the client to

the requested object. Binding is accomplished by returning a

serialized proxy that implements the interface of the object.

Note that this proxy contains the current address of the

object. Consequently, by merely deserializing the proxy,

the client can immediately invoke methods of the object.

We return to the Locator when discussing the Globe loca-

tion service below.

2.2.5. Mobility manager

The Mobility Manager (MM) is responsible for moving

objects from one location to another. Instead of implement-

ing a single migration scheme, different schemes are possi-

ble by making use of Object Movers (OM). For example,

some objects can be migrated merely by shipping their state

to the target machine because the necessary classes are

already available. In other cases, migration may need to

take place by shipping code and state, or by letting the target

®rst load the appropriate classes. As another example, when

the target machine is a notebook, it will probably be neces-

sary to ensure that it has all the necessary classes available

to instantiate the object, for the notebook may need to oper-

ate in disconnected mode. On the other hand, for a continu-

ously online target, classes can be dynamically downloaded

when they are actually needed. By providing different OMs,

it becomes possible to implement different migration

schemes into a single system.

In effect, an OM implements a speci®c migration policy.

An MM is responsible for coordinating the migration

between two locations. When an object is to be moved

from one host to another, the MM at the source is given

the address of the target host, and optionally a preferred

OM. This MM then contacts the MM of the target host

and negotiates an OM that both machines support, keeping

the preferred OM in mind. The negotiated OM is returned to

the caller of the MM. The OM is then used to actually move

the mobile object. As soon as the object is in a transferable

state, the OM marshals the object, transports it, and lets the

OM at the target machine rebuild the object.

2.2.6. Replication manager

The original version of CORE supported only remote

objects. However, a Replication Manager (RM) has later

been added and which is responsible for replicating objects

to other locations. Keeping the state of replicated objects

consistent with each other is, however, the task of the repli-

cated objects themselves, because they know best how to do

that most ef®ciently. When an object is to be replicated to

another host, the RM is contacted specifying the target host

and port number, and the object to replicate. Subsequently,

the RM asks the object to ®rst create a replica of itself and

then moves this replica to the speci®ed target machine.

Replication is discussed in more detail below.

3. Distribution of CORE objects

The original version of CORE does not support replica-

tion, and has some serious limitations with respect to its

scalability. The ®rst problem is that the state of a remote

object always resides at a single location. Consequently, in a
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geographically dispersed environment, access times to such

objects may be considerable. If an object is not simulta-

neously shared by multiple clients, access times can be

improved by migrating the state to the object's current

client. However, this solution does not work when several

clients require access to the object at the same time. Another

problem is that if objects are allowed to migrate a lot, we

need a scalable mechanism to track and locate them. The

original naming service in CORE offers only a centralized

solution which scales poorly to large networks.

There are basically only three solutions to tackle scalabil-

ity problems: distribution (i.e. partitioning), replication, and

caching [19]. In the case of replication or caching, objects

are copied to several machines. In principle, service requests

are simply forwarded to the nearest copy. The main draw-

back of replication is that whenever a copy is updated, that

copy becomes inconsistent with the others. Consequently,

we need to update the other copies as well. In a worst-case

scenario, propagation of updates may require global

synchronization between the replicas. Unfortunately, global

synchronization has itself inherent scalability problems. The

only approach to alleviate such problems is to provide

weaker consistency guarantees.

An important observation, however, is that the ideal repli-

cation policy is dependent on the usage of the object being

replicated. For example, as reported in Ref. [20], applying a

single replication strategy to all documents from the same

Web site will never lead to the same performance as select-

ing a policy for each document separately. In other words,

applying caching and replication as a means to enhance the

scalability of a system, is most effective if each object

is allowed to have its own replication strategy. Origin-

ally, CORE, like many distributed systems based on

remote objects such as CORBA and Java RMI, lacked this

support.

We have improved the scalability of CORE in two ways.

First, we have replaced part of the naming service by a

scalable location service that allows us to track frequently

migrating objects in an ef®cient way. Second, the remote-

object model has been partly replaced by physically distrib-

uted objects that encapsulate their own strategy regarding

how their state is distributed, replicated, or migrated. These

two extensions to CORE are described next.

3.1. A scalable location service

Our ®rst extension to CORE was to partly replace the

naming service with a scalable location service as devel-

oped in the Globe project [25]. The CORE Locator was

rebuilt to act as a front end to this location service. The

basic idea is that each distributed object in CORE is

assigned a lifelong object identi®er. It is crucial that this

identi®er never changes, and, in particular, that it is location

independent. In contrast, a (location-dependent) contact

address is used to refer to the current location of an object.

As we explained, a contact address in CORE is

implemented as a serialized proxy, similar to the use of

proxies in Java RMI [30]. When a client wants to bind to

an object it looks up the object's current location by provid-

ing the object identi®er to the location service. The location

service returns a contact address in the form of a serialized

proxy. This proxy is subsequently deserialized by the client

and automatically initialized. The proxy already has the

current location of the object as part of its state, so that

after deserialization, the client can immediately invoke the

object's methods as made available through the proxy.

Note that when an object moves, the proxy as stored in the

location service is updated with the object's new location.

As we explain next, updating means removing the old proxy

and inserting a new one. However, for those processes that

are already bound to an object, and thus already have a

proxy in their address space, it is the proxy's responsibility

to keep track of the current location of the object. Currently,

this has been implemented by raising an exception when a

client attempts to access the object again, enforcing the

client to look up the object's current address in the location

service.

The location service organizes the underlying network

into a hierarchical collection of domains. For example, a

lowest-level domain may represent the entire network of a

science park, whereas the next higher-level domain repre-

sents the city where that science park is located. Each

domain is represented in the location service by a directory

node. The concept of a domain in the location service is thus

somewhat similar to the concept of a domain in DNS.

A directory node has a contact record for every (regis-

tered) object in its domain. The contact record is divided

into a number of contact ®elds, one for each child node. A

directory node stores either a forwarding pointer, or an

object address in the contact ®eld. A forwarding pointer

indicates that an address can be found at the child node.

Contact records at leaf nodes are different, they contain

only one contact ®eld storing the object's address in that

leaf domain.

As an example, consider Fig. 3, which shows a con®g-

uration for a single object that has been replicated across

Los Angeles and Houston. The root node has a forwarding

pointer to the USA node, which in turn points both to

California and Texas. Now, consider a client in Miami

who wants to contact the object. In that case, a lookup

request will travel from the Miami node upwards to the

®rst node where the object is known. In our example, this

is the USA node. From there on, the request is forwarded

either to Texas or California, and eventually reaches a leaf

node where an address is stored. The important issue is that

scalability is obtained by exploiting locality: a request

issued within the USA will never leave the USA domain

if a replica is present in that domain.

The location service has been implemented in Java and

integrated with CORE. Further details concerning its

algorithms, including the partitioning of higher-level

nodes, can be found in Refs. [2,27].
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3.2. Physically distributed objects

Ef®ciently locating mobile objects in a geographically

dispersed network is not enough for scalability. We also

need support for caching and replicating objects. The ideal

replication strategy for all objects is that updates are (1)

immediately propagated to all copies, and (2) each copy

sees all updates in the same order. Unfortunately, such a

strong degree of consistency is impossible to implement

ef®ciently in large-scale systems as it requires global

synchronization. As we discussed, the solution to scalability

is to weaken consistency requirements so that alternative

and more ef®cient replication strategies can be followed.

Such an approach requires that we take the usage and update

patterns of individual objects into account. Consequently, it

makes sense to let an object fully encapsulate its own repli-

cation strategy. This is the approach followed in Globe [26],

and which we adopted for CORE.

One of the key concepts of the Globe system is its model

of Distributed Shared Objects (DSOs). Like other object-

based models each object offers one or more interfaces, each

consisting of a set of methods. Objects are passive; activity

comes from processes. Multiple processes may access the

same object simultaneously. A major distinction with other

object-based models is that objects are physically distribu-

ted, meaning that copies of an object's state can and do

reside on multiple machines at the same time. However,

processes are not aware of this: state and operations on

that state are completely encapsulated by the object. This

means that all implementation aspects, including commu-

nication protocols, replication strategies, and distribution

and migration of state, are part of the object but are hidden

behind its interface. This model is illustrated in Fig. 4.

A DSO has the possibility to distribute (part of) its state

among several machines. It is the responsibility of the object

to decide what distribution or replication policy is taken and

to keep its state consistent. The policy can vary from repli-

cating the whole state on different machines (replication) to

dividing its state in distinct parts and locating each part on

different machines (partitioning). Also, how, when, and

where updates are propagated is entirely left to the object

to decide. As a consequence, different objects can and do

implement different replication policies.

Each distributed object is spread across multiple

processes by installing a local object at each process.

Each local object is composed of several subobjects, and

is itself again fully self-contained as also shown in Fig. 4. A

minimal composition consists of the following four subob-

jects.

Semantics subobject. This is a local object that imple-

ments (part of) the actual semantics of the distributed object.

As such, it encapsulates the functionality of the distributed

object. The semantics object consists of user-de®ned primi-

tive objects written in programming languages such as Java

or C11. These primitive objects can be developed

independent of any distribution or scalability issues.

Communication subobject. This is generally a system-

provided subobject. It is responsible for handling commu-

nication between parts of the distributed object that reside in

different processes. Depending on what is needed by the

other components, a communication subobject may offer

primitives for point-to-point communication, multicast

facilities, or both.

Replication subobject. The global state of the distributed

object is made up of the state of its various semantics

subobjects in different processes. Semantics subobjects

may be replicated for reasons of fault tolerance or perfor-

mance. The replication subobject is responsible for keeping

these replicas consistent according to some (per-object)

coherence strategy. Different distributed objects may have

different replication subobjects, using different replication

algorithms.

The replication subobject has a standard interface.

However, implementations of that interface will generally

differ between replication subobjects. In a sense, this

subobject behaves as a meta-level object comparable to
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techniques applied in re¯ective object-oriented program-

ming [12].

Control subobject. The control subobject takes care of

invocations from the client process, and controls the inter-

action between the semantics subobject and the replication

subobject. This subobject is needed to bridge the gap

between the application-de®ned interfaces of the semantics

subobject, and the standard interfaces of the replication

subobject.

A key role is, of course, reserved for the replication

subobject. An important observation is that communication

and replication subobjects are unaware of the methods and

state of the semantics subobject. Instead, both the commu-

nication subobject and the replication subobject operate

only on invocation messages in which method identi®ers

and parameters have been encoded. This independence

allows us to de®ne standard interfaces for all replication

subobjects and communication subobjects.

As in CORE, each DSO has a location-independent,

globally unique object identi®er. To distinguish such iden-

ti®ers from those used in CORE, we refer to them as Globe

OIDs. Again, a client can invoke the methods of a DSO by

®rst binding to the object. Binding requires that a contact

address is looked up in the location service. In contrast to

CORE, a contact address for a Globe DSO consists of a

transport-level address, along with a protocol identi®er,

specifying exactly what subobjects the client should imple-

ment in order to communicate with the object. In the current

implementation, a protocol identi®er takes the form of a

URL referring to an implementation of the required

subobjects that the client should load into its address space.

The effect of binding to a DSO is that a local object is

placed in the client's address space. This local object has the

same internal organization as before, in that it consists of the

four subobjects described above. In this sense, there is no

strict distinction between the client and other processes

bound to the same DSO. In principle, the client may register

a contact address for the object in the location service, thus

allowing other processes to bind to the object as well, using

the freshly bound process as an intermediate. However, a

security policy may possibly prohibit such registration.

4. Jackets: integrating CORE and Globe

To address the scalability problems inherent to the CORE

object model, we have integrated CORE and Globe into a

single system. An important objective was to make the

integration transparent to CORE applications. In other

words, the existing CORE object model should essentially

remain the same. Likewise, we did not want to affect the

Globe object model. This approach has led to an integrated

object model shown in Fig. 5. We refer to objects in this

model as CORE Distributed Shared Objects (CORE DSOs).

Conceptually, the integration is relatively simple. Each

local object of a Globe distributed shared object (referred to

as a Globe DSO) is fully encapsulated in a special CORE

proxy, called a jacket. A jacket offers all the standard inter-

faces that are normally provided by CORE proxies. In this

sense, the CORE DSO cannot be distinguished from other

CORE objects. This encapsulation also allows a Globe local

object to treat a jacket as just a client. In other words, the

local object can remain ignorant of how a process is actually

bound to it.

Consequently, CORE applications and Globe DSOs are,

in principle, fully independent of one another. However,

there are a number of subtleties that need to be dealt with

to maintain this independence, which we discuss next.

4.1. Creating a CORE DSO

Our ®rst concern is the creation of a CORE DSO. In

Globe, a DSO is created by having a process ®rst create a

local object with all its subobjects. In practice, this means

that the process loads a ®le containing the complete imple-

mentation of a speci®c local object after which it instantiates

the object.
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Together with instantiating a local object, a Globe object

identi®er (Globe OID) is generated for it, effectively estab-

lishing a Globe DSO, albeit one with only a single local

object. The Globe OID is used to register a Globe contact

address in the location service. This contact address allows

another process to contact the process that just created the

object, and bind to it.

In essence, the same procedure is followed when creating

a CORE DSO. First, a CORE process creates a jacket.

Because a CORE process can, in principle, support any

objects written in Java, it is straightforward to embed a

Globe local object that has been written in Java into a

CORE process. After instantiating a jacket, initialization

of the jacket continues by creating a Globe local object as

just described, along with a Globe OID. Only the latter is

stored in the serializable state of the jacket. The Globe local

object that has just been created does not form part of this

state, as shown in Fig. 6. We return to this issue below.

To make the Globe local object known to other objects,

the CORE process ®rst creates a contact point, such as a

socket. It then registers the local object at the location

service by handing it a (Globe OID, Globe address)-pair,

with the address containing all the necessary information to

enable binding. Note that such a pair is useless to CORE

processes, which expect a serialized CORE proxy. There-

fore, to facilitate such processes, the associated jacket is

serialized and inserted into the location service under its

own CORE OID. Of course, jackets for local objects that

belong to the same Globe DSO will have the same CORE

OID.

Binding to a CORE DSO is now straightforward. A

process looks up a CORE contact address in the location

service by handing it a CORE OID. The location service

returns a serialized jacket, containing a Globe OID in its

serialized state. After deserializing and instantiating the

jacket, a second lookup takes place, but now by means of

the Globe OID found in the jacket. This lookup returns a

contact address for a Globe local object. The process

subsequently creates a local object that connects to the

associated Globe DSO through the returned contact address.
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4.2. Migration and replication

Objects in Globe and CORE are highly independent in the

sense that mutual adaptations are actually not necessary to

allow integration. However, migration and replication as

provided by CORE require some subtle changes.

As we explained, migration in CORE takes place by

means of the MMs. In essence, a CORE object is moved

by serializing it, transferring the serialized object to the

target server, and deserializing it again. A different

approach needs to be followed for a CORE DSO. Migration

is done in two phases. The ®rst phase consists of migrating

the jacket, whereas the second phase consists of migrating

the associated Globe local object.

Migrating the jacket is straightforward. Like any other

CORE object, the jacket is serialized and moved from

source to destination with the help of the respective MMs

and OMs as described above. Note that the volatile pointer

shown in Fig. 6 is not serialized. After this phase, there is

still a Globe local object at the source, but none at the target.

To Globe, unless special measures are taken, this situation

appears as if the local object at the source is no longer used.

In principle, it could therefore be cleaned up. However, the

local object might contain state that must be safeguarded

®rst.

To avoid removing the local object, a binding to the local

object is maintained at the source as long as necessary, as

we explain next. In line with the approach that objects

should fully encapsulate their own distribution strategy, an

object-speci®c scenario is followed for completing the

migration process. Let us consider two example scenarios.

In the ®rst scenario, the jacket at the destination creates a

Globe local object that connects to the local object at the

source. A state transfer between these two Globe local

objects subsequently takes place. Then, the contact address

of the source is removed from the location service, whereas

a contact address at the destination is inserted. At that point,

all state of the Globe DSO has been preserved, so that we

can safely remove the Globe local object at the source.

Removal includes informing all other local objects of the

Globe DSO to disconnect from the local object at the source,

if necessary, and possibly reconnect to the local object at the

destination.

A completely different scenario is the following. After

having migrated the jacket to the destination, the local

object at the source removes its contact address from the

location service. This removal prevents other processes

from binding to it. The local object subsequently instructs

processes to disconnect from it, possibly after having

shipped its state to other local objects such that the state

of the DSO as a whole is preserved. Meanwhile, the jacket at

the destination simply starts binding to the Globe DSO

referred to by the Globe OID that is part of its state. Binding

at the destination can take place simultaneously with the

unbinding of the local object at the source.

Variants of these two scenarios can easily be thought of.

However, it is up to the DSO to decide which strategy is the

best one to follow. It is precisely this separation between

mechanism and policy that we feel is currently lacking in

many object-based distributed systems.

Replication is currently dealt with in a similar fashion. A

CORE RM may be instructed to create a new replica, for

which it creates a jacket as described above. The newly

created jacket simply binds to the associated Globe DSO

and, following an object-speci®c scenario, maintains local

state consistent with other local copies. Deciding on where

to create a new replica is currently left to applications.

However, it should also be possible for an object to decide

that more or fewer replicas are needed. In that case, an

object will itself contact a RM to install or remove a replica.

We are currently developing mechanisms to support such

object-initiated replication (see also Ref. [11]).

5. Discussion and related work

Distributed objects in virtually all existing systems are

actually implementations of a remote-object model in

which the object resides at a single server. Remote clients

are offered transparent access to an object by means of

proxies. We argue that the remote-object model misses

two important properties.

First, it can be argued whether remote objects are actually

distributed. In many cases, remote objects are nothing but

traditional objects contained in a single object server, but

which can be transparently accessed by remote clients by

means of proxies. Further distribution transparency is

supported by allowing the object to migrate between

servers, but hiding all location-awareness inside the proxies.

Second, remote objects do not encapsulate all implemen-

tation aspects. In particular, many distribution policies are

implemented by special or con®gurable object servers

[10,13]. We argue that distribution policies should be part

of an object's implementation, similar to why an object

encapsulates its state and operations.

There are only a few distributed-object models that

follow this approach, notably the fragmented objects as

developed by the SOR group at INRIA [15]. At best, support

is given for adapting the client proxy to speci®c objects, as

used in Spring's subcontract model [9] or as implemented in

Java RMI [30]. To compensate for the lack of ¯exibility in

the supported object model, CORBA provides interceptors

as a mechanism to provide object-speci®c policies [18].

However, interceptors essentially allow only breaking into

an existing ORB and modifying its invocation policy. Much

more is needed to actually provide object-speci®c support

for distribution.

There are other projects that use the remote-object model

while addressing scalability problems. In Legion, scalability

is essentially addressed by aiming at reducing communica-

tion traf®c and exploiting locality [8,14]. To do so, copies of

objects can be cached. However, what Legion does not
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address is the synchronization problem that arises when a

replicated object is updated. In contrast to the approach

described in this paper, Legion provides no support for

accommodating a wide variety of replication scenarios.

Replication will have to be handcrafted as part of object

development.

Another major distinction with Legion is its lack of

support for tracking mobile objects. In essence, Legion's

mechanism for locating an object relies heavily on caching

the object-to-address binding. Such caching will work only

if bindings are stable, which is not the case for mobile

objects.

Globus is another project that addresses scalability issues

[6,7]. In contrast to CORE, Globe, and Legion, Globus is not

so much concerned about objects, but rather about wide-

area resource management such that applications can access

and use resources at remote sites. An important goal

achieved by Globus, is to provide a mechanism that will

let different high-performance computing services inter-

operate on behalf of a large wide-area applications.

Interoperability is the keyword here. In contrast, in this

paper we address the problem of achieving scalability not

by connecting different resources, but rather by providing

mechanisms to support advanced caching and replication,

using objects as our basis.

If we take a step back and concentrate on the functionality

of the integrated CORE and Globe system, the work done

with respect to Jini comes closest to what we have described

in this paper [17]. Jini is based on Java's remote-object

model, but provides many services that are also available

in CORE and Globe. One of Jini's most powerful services

for which CORE has no immediate counterpart, is Java-

Spaces. This directory service uses an associate memory

to match queries against objects [16]. Although powerful,

JavaSpaces has the serious drawback of being inherently

dif®cult to scale, as has been demonstrated by the various

implementations of Linda [32], from which JavaSpaces has

inherited its model.

6. Conclusions and future work

Our research demonstrates that it is possible to support

object-speci®c policies while retaining the client's view of a

remote-object model. In fact, we have shown that integra-

tion of a remote-object model and that of physically distrib-

uted shared objects can be done in such a way that neither

model needs to be affected. Integration takes place by means

of a relatively simple type of object, called a jacket.

Although we have concentrated on the integrated imple-

mentation of CORE and Globe, this same approach can be

followed for existing systems such as CORBA.

Our approach is still lacking a number of important

features. For example, we still need to include security

into our system, which is currently a subject of active

research in our groups. Fault tolerance, although not

addressed in this paper, is partly covered by our support

for caching a replication. However, more work needs to

be done in this area.

Besides our continuing work on distributed objects, we

are currently focusing on building a large-scale worldwide

distributed archive based on the technologies described in

this paper. The archive will need to support highly mobile

users and objects, and be tightly secured. An experimental

system that forms the basis of such an archive is described in

Ref. [1].
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