Scalable Human-
Friendly Resource
Names

A new uniform resource identifier proposes to improve

Gerco Ballintijn,

Maarten van Steen, and
Andrew S.Tanenbaum
Vrije Universiteit Amsterdam

20

SEPTEMBER e OCTOBER 2001

http://computer.org/internet/

both scalability and usability in naming replicated resources

on the Web.

o name resources, the World Wide

I Web uses uniform resource identi-

fiers (URIs), the most common of
which is the uniform resource locator. A
URL serves two distinct purposes: to iden-
tify a resource and to access it. Unfortu-
nately, combining these functions creates
scalability problems because resource
identification and access have different
requirements.

Consider, for example, a popular Web
page that we want to replicate to improve
its availability. This currently requires
using multiple URLs to identify each
replica. To make replication transparent
to users, we need a name that refers not
to a specific replica but to the set of repli-
cas as a whole. Uniform resource names
(URNSs), another URI type, provide a solu-
tion to this scalability problem. A URN
differs from a URL in that it only identi-
fies a Web resource; it does not indicate a
resource’s location or contain other infor-
mation that might change.

1089-7801/01/$10.0002001 IEEE

In addition to scalability, we need to
address usability: People need a way to
name Web resources with identifiers that
are easy to share and remember. To fill the
gap between what URNSs provide and what
humans need, we propose a new kind of
URI called human-friendly names (HFNs).
In this article, we present the design for a
scalable HFN-to-URL resolution mecha-
nism that makes use of the Domain Name
System (DNS) and the Globe location ser-
vice to name and locate resources.

Naming
Replicated Resources
Using URNs to identify resources and
URLs to access them lets end users and
Web developers use one URN to refer
(indirectly) to copies at multiple locations.
To access the resource identified by a
URN, we need a way to resolve that URN
into access information, such as a URL.
Figure 1a shows the current “one page,
one URL” scheme; compare this to Figure

IEEE INTERNET COMPUTING

1b, which shows how URNs permit the transpar-
ent replication of Web resources. Because a URN
refers to a resource rather than its location —
much as an ISBN number identifies a book rather
than its copies — we can move the resource
around without changing its URN. A URN can
thus support mobile resources by referring indi-
rectly to a set of URLs that changes over time.

Because URNs identify resources to machines,
they need not be human-friendly. RFC 1737 states
only that URNs must be human transcribable —
again like ISBN numbers, which people can write
down but not remember easily.! RFC 2276 advo-
cates high-level names that people find easy to use
and that offer location-independent Web resource
identification.? Unlike URNs, HFNs explicitly allow
the use of descriptive, highly usable names.

Like a URN, an HEN must be resolved to one or
more URLs when the user needs to access the
named resource. We propose a two-step resolution
process that binds the HFN to a URN and the URN
to multiple URLs. The process, illustrated in Figure
1c, first requires resolving the HFN to its associat-
ed URN and then resolving the URN to its associ-
ated URLs.

This two-step approach offers many advan-
tages. Replicating or moving a resource will not
affect its name, for example, and a user can freely
change the HFN without affecting replica place-
ment. As in the use of symbolic links in file sys-
tems, a user might even decide to use several
names to refer to a single resource.

Our HFN-to-URL resolution mechanism pays
specific attention to two scalability issues: sup-
porting a large number of resources and support-
ing resources distributed over a large geographi-
cal area. To the best of our knowledge, our design
provides the first solution to large-scale HFN-to-
URL resolution.

The HFN Naming Model

Human-friendly naming takes many different
forms, the two major types being the well-known
“yellow pages” and “white pages” services. The
yellow-pages approach uses directory services
such as those based on LDAP.? Users search for a
resource based on attribute values that content
providers have assigned to that resource. The main
drawback to directory services is their limited scal-
ability. In practice, only implementations based on
local-area networks offer acceptable performance;
large-scale, worldwide directory services have yet
to be developed. At best, current implementations
consist of federations of local directory services in

IEEE INTERNET COMPUTING

Scalable HFNs

URL| |[URL| [URL URN HFN

Y
URN

[URL] IURLI [URL] |URL| |URL| [ORL]

a) (b) (C)

~

Figure |.Three schemes for naming a replicated resource: (a)
using multiple URLs, (b) using a single URN, and (c) using an HFN
combined with a URN.

which searches can span multiple sites only when
severely restricted.

The white-pages approach employs a (possibly
hierarchical) naming graph, such as that used in
the DNS. Although they offer less advanced facil-
ities than directory services, naming services have
proven scalable to worldwide networks with mil-
lions of users. Taking advantage of this fact, our
HFNs use a DNS-based hierarchical namespace,
which gives users a convenient and well-known
way to name resources.

For our naming system, we restrict ourselves to
only highly popular and replicated Web resources.
We have not yet incorporated support for other
resource types, such as personal Web pages or
highly mobile resources. We also assume that
changes to a particular part of the namespace
always originate from the same geographical area.
We chose this restricted resource model to make
efficient use of the existing DNS infrastructure.
Given these restrictions, however, our HFN scheme
is currently not appropriate as a general replace-
ment for URLs.

Because we implement our HFNs using DNS,
their syntax closely follows the structure of domain
names. As an example, consider an HEN that refers
to the source code of the current stable Linux ker-
nel, hfn:stable.src.linux.org. The hfn: preﬁx
identifies our URI scheme; the rest identifies the
resource by name. Our security policy is designed
just to prevent unauthorized changes to the HFN-
to-URL mapping. Thus, the mapping is not kept
confidential because we assume that HFNs will be
shared as openly as URLs are today.

Because scalability depends heavily on locality,
we want the HFN resolution service and its com-
ponents to use nearby resources when possible.

http://computer.org/internet/ SEPTEMBER » OCTOBER 2001

21

Wide-Area Resource Naming

22

SEPTEMBER e OCTOBER 2001

Name
service
2
3
| 4
Web *HFN-to-URL ®| Location
browser | proxy - service
8 5
6
7
HTTP
server

Figure 2. Retrieving Web resources named by
HFNs.The HFN-to-URL proxy intercepts the HFN
request, uses the name and location services to
resolve the HFN, and retrieves the named
resource from the HTTP server.

Resource name resolution should use locality in
two ways:

m To permit scalability, the resolution service
should give users direct access to the nearest
replica.

m The name resolution process itself should use
nearby resources whenever possible.

For example, assume a user located in San Fran-
cisco needs the DNS name www.vu.nl resolved. In
the current DNS, name resolution would proceed
through a root server — the n1 domain name serv-
er (located in the Netherlands) — and the Vrije Uni-
versiteit name server (located in Amsterdam). If a
replica of the resource happens to already exist in
San Francisco, the lookup request will have trav-
eled across the world to return a local address. The
process would be far more efficient if the name res-
olution process used only name servers in the user’s
proximity.

HFN Architecture
In its general form, the HFN-to-URL mapping is an
N-to-M relation where multiple HFNs can refer to
the same set of URLs. This mapping might change
regularly when, for example, a resource is given
an extra name or a replica is added or moved. To
efficiently store, retrieve, and update the HFN-to-
URL mapping, we split it into two separate steps:
HFN-to-URN and URN-to-URL. URNSs provide sta-
ble, globally unique names for every resource. By
splitting the HFN-to-URL mapping, we have an N-
to-1 relation and a 1-to-M relation, each far easi-
er to maintain than a single N-to-M relation.

To implement our naming system, we add three

http://computer.org/internet/

new elements to the normal setup of Web browsers
and HTTP servers: an HFN-to-URL proxy, a name
service, and a location service. The HFN-to-URL
proxy operates as a front end to the two services. It
must recognize HFNs and then resolve them by
querying the name service — which maintains the
HFN-to-URN mapping for each unique resource —
and the location service, which maintains the
URN-to-URL mapping and determines the type of
URN used in our naming scheme. The proxy then
uses the URL obtained from the location service to
access the named resource. In our design, the
proxy is a separate process that can interact with
any standard Web browser, although a plug-in
module could introduce the same functionality
directly into a browser.

Figure 2 shows our proposed method for retriev-
ing Web resources named by HFNs. When a user
enters an HFN in the Web browser, the browser
contacts the HFN-to-URL proxy to obtain the
HFN-designated Web resource (step 1). The proxy
recognizes the HFN and contacts the name service
(step 2). The name service resolves the name to a
URN and returns it to the proxy (step 3). The proxy
then contacts the location service (step 4), which
resolves the URN to a URL and returns it to the
proxy (step 5). The proxy contacts the HTTP serv-
er storing the named resource (step 6). The server
returns an HTML page (step 7), which the proxy
then passes to the Web browser (step 8).

Name Service

To store the HFN-to-URN mapping, we use the
DNS, which currently serves primarily to name
Internet hosts and e-mail destinations. With only
minimal changes, we can reuse the existing DNS
infrastructure for HFNs.

The Domain Name System. DNS provides an
extensible hierarchical namespace in which gen-
eral naming authorities delegate responsibility for
parts of their namespace (subdomains) to more
specific naming authorities. The naming authori-
ty for the . com domain, for example, delegates the
responsibility for the intel.com domain to Intel.
A naming authority provides the resources neces-
sary for storing and querying a DNS name, and
can decide which names to store in its subdomain.
Intel can thus create whatever host name or e-mail
destination it wants in its subdomain.
Conceptually, resolving a host name in DNS
involves contacting a sequence of name servers
that store increasingly specific domains. To
resolve the host name www. intel.com, the reso-

IEEE INTERNET COMPUTING

Scalable HFNs

Related Work in Wide-Area Naming

Most URI development occurs within Inter-
net Engineering Task Force (IETF) working
groups. The uniform resource name work-
ing group, for example, has defined the
overall URN namespace (RFC 2141),' pro-
vided an example URN namespace for IETF
documents (RFC 2648),2 and outlined a
general architecture for resolving URNs
(RFC 2276).2 In this architecture, the URN
namespace actually consists of several inde-
pendent URN namespaces,and every URN
namespace has (potentially) its own specif-
ic URN resolver. Resolving a URN thus
requires selecting the appropriate URN
resolver, which is accomplished by a
resolver discovery service (RDS).

In RFC 2168, Daniel and Mealling pro-
pose building an RDS that uses DNS to
contain resource records specifying rewrite
rules.* A DNS name server applies these
rules to find the appropriate URN resolver
and possibly even the resource itself. Our
research does not include the RDS because
we focus on one specific URN namespace,
the object handle space.

The relatively new IETF common name
resolution protocol (CNRP) working
group approaches human-friendly naming
through common names® such as trade
names, company names, or book titles.The
working group seeks to create a light-
weight search protocol that lets users fur-
ther refine searches by providing parame-
ters in addition to the common name.
Resolving common names at different
information providers permits acquiring
different types of information.The working

group’s scope does not include implemen-
tation of a scalable common name resolu-
tion service, however.

The digital object identifier; a project of
the International DOI Foundation (http:/
www.doi.org) initiated by the U.S. publish-
ing community, identifies intellectual prop-
erty in the digital environment. As its loca-
DOl
implementation uses the Handle system,

tion service, the current
which maps a DOI (known as a handle) to
access information, for instance,a URL.The
handle’s prefix specifies a naming authori-
ty; the suffix specifies a name under that
naming authority. Resolving a handle
requires a user to contact a global handle
registry to find a local handle registry, where
the handle can be fully resolved. The Han-
dle system supports scalability by allowing
replication of both the global and local han-
dle registries. It does not ensure, however,
that the access information it provides
refers to resources local to the user, nor
does the handle resolution process use
local resources when possible.

The Location Data System (LDS),® a
location service based solely on DNS, maps
URLs to IP addresses, whereas our approach
maps HFNs to URLs. LDS stores server IP
addresses directly in DNS, while we store a
URN in DNS and use a separate service to
provide a set of URLs for the named
resource.The LDS scheme requires updat-
ing the DNS server every time a replica is
added or removed; this makes the system
more dynamic and caching less effective.
Unlike LDS, our system can efficiently pro-

vide the URL nearest to the user.

Akamai and Sandpiper base their com-
mercial content delivery systems on the
locations of the servers storing replicated
Web resources. Both systems require the
content provider to change the replicated
resource’s original URL to point to the deliv-
ery system servers.Akamai uses a modified
Web server to redirect clients to servers,
whereas Sandpiper uses a DNS-based solu-
tion. Both systems reportedly consider both
client location and current network condi-
tions when providing the client with aVWeb
server.While both provide local access to
the Web resources they support, however,
their naming systems are not local.

References
I. R. Moats, “URN Syntax,” IETF RFC 2141, May

1997; available at http://ietf.org/rfc/rfc2141.txt.

2. R. Moats, “A URN Namespace for IETF Docu-
ments,” IETF RFC 2648, Aug. 1999; available at
http://ietf.org/rfc/rfc2648.txt.

3. K. Sollins, “Architectural Principles of Uniform
Resource Name Resolution,” IETF RFC 2276, Jan.
1998; available at http://ietf.org/rfc/rfc2276.txt.

4. R.Daniel and M. Mealling, “Resolution of Uniform
Resource Identifiers Using the Domain Name Sys-
tem,” IETF RFC 2168, June 1997; available at
http://ietf.org/rfc/rfc2168.txt.

5. N.Popp et al.,“Context and Goals for Common
Name Resolution,” IETF RFC 2972, Oct. 2000.

6.).Kangasharju, K.W.Ross,and J.W.Roberts,“Locat-
ing Copies of Objects Using the Domain Name Sys-
tem,” Proc. 4th Web Caching Workshop, Cooperative
Assn. for Internet Data Analysis (CAIDA), San
Diego, Calif., 999.

lution process visits, in turn, the name servers
responsible for the root, .com, and .intel.com
domains. The latter name server resolves the
complete host name.

DNS uses caching extensively to enhance per-
formance. When a name server is asked to resolve
a DNS name recursively, it contacts the sequence
of name servers itself to resolve the name. The
name server can thus cache the intermediate and
end results so that it won’t have to repeat the
process to look up the same or a similar name. For
effective caching, however, DNS needs to assume
that the name-to-address mapping does not
change frequently.

IEEE INTERNET COMPUTING

DNS uses resource records to store name map-
pings at name servers. A DNS name can have zero
or more resource records that fall into two cate-
gories. The first type stores user data such as the
resource records for naming Internet hosts and
e-mail destinations, and associates an IP address
or mail server with a DNS name. DNS uses the sec-
ond type, the name server resource record, inter-
nally to implement the namespace delegation. This
resource record indicates another name server at
which to continue name resolution.

Using DNS to store HFNs. We introduce a new type
of resource record to store the association between

http://computer.org/internet/

SEPTEMBER e OCTOBER 2001

23

Wide-Area Resource Naming

|:| Empty contact field
Contact field with forwarding pointer

B contact field with URL
USA

\ 4

California Texas

L0

AnlpN N

OO

Los Angeles Houston

Miami

Figure 3. Search tree with contact records for a specific resource.The resource has two replicas, one
located in Los Angeles and one in Houston.The contact record at the USA node has three contact fields,
two containing a forwarding pointer and one that is empty.

a URN and a DNS name. When a user introduces
a new HFN, he or she creates a resource record to
store the associated URN. The user will subse-
quently insert this record into the DNS namespace.
The name server responsible for the HFN’s parent
domain stores the record. To insert the HFN
hfn:devel.src.linux.org, for instance, we must
contact the server responsible for the src.linux.
org domain. We can then insert the HFN at that
server dynamically using the DNS update opera-
tion as described in RFC 2136.*

Location Service

To resolve URNs into URLs, we use the Globe loca-
tion service.> A location service lets us associate a
set of URLs with a single URN. To identify
resources, Globe uses object handles, which we
therefore use as URNs in our two-level HFN reso-
lution scheme. (To simplify discussion, however,
we will continue to use the term URN.) The loca-
tion service also offers two update operations,
insert and delete, for modifying the set of URLs
associated with a URN.

Architecture. To permit efficient URL updates and
lookups, we organize the underlying wide-area
network (the Internet, for example) into a hierar-
chy of domains. These domains resemble those
used in DNS except that we have tailored them to
the location service only, where they represent
geographical, administrative, or network topology
regions. A lowest-level domain might represent a
university campus-wide network, for example, and
the next higher domain could be the city in which

24 SEPTEMBER ® OCTOBER 2001 http://computer.org/internet/

that campus is located. Another important differ-
ence is that the domain hierarchy in the location
service is a completely internal structure that,
unlike DNS, is invisible to users.

The location service maintains directory nodes
representing each domain, and together these
nodes form a worldwide search tree. Each directo-
ry node has a contact record, divided into contact
fields for all child nodes, for every (registered)
resource in its domain. A directory node stores
either a forwarding pointer or the actual URLs in
the contact field. A forwarding pointer indicates at
which child node a lookup operation can find
URLs. Because leaf nodes do not have any child
nodes, their contact records differ from those at
directory records in the rest of the tree in that they
contain only one contact field storing the URLs
from the leaf domain.

Every URL stored in the location service has a
path of forwarding pointers that leads to it from
the root down. We can always locate a URL by
starting at the root node and following this path.
URLs are normally stored in leaf nodes, but stor-
ing them at intermediate nodes could lead to con-
siderably more efficient lookup operations for
highly mobile resources. Our current model
excludes (highly) mobile resources, however, and
assumes that all URLs are stored in leaf nodes.

Figure 3 shows an example of the contact
records for one URN. The root node has one for-
warding pointer for the URN, indicating that there
are URLs in its left subtree, which is rooted at the
USA node. The USA node, in turn, has forwarding
pointers to the California and Texas nodes, and

IEEE INTERNET COMPUTING

both nodes have forwarding pointers to a leaf
node that actually stores the URLs.

Operations. To find a resource’s URL, a user initi-
ates a lookup operation at the leaf node of the
domain in which he or she resides. The user pro-
vides the resource’s URN as a parameter, and the
lookup operation checks to see whether the leaf
node has a contact record for it. If so, the operation
returns the URL found in the contact record. Other-
wise, the operation recursively checks nodes on the
path from the leaf node up to the root. If the lookup
operation finds a contact record at any of these
nodes, it follows the path of forwarding pointers
from this node down to a leaf node where a URL is
found. If the lookup finds no contact record at any
node between the leaf node and the root, the loca-
tion service considers the URN as unknown.

Consider a user located near the Miami leaf
node, for example, as shown in Figure 3. When the
user contacts the leaf node with a URL request, the
node forwards the request to its parent, the Flori-
da node, because it does not contain a contact
record. The Florida node also has no record for the
URN and forwards the request to its parent, the
USA node. The USA node, storing a contact record
for the resource, sends the request to one of its
children based on the forwarding pointers in the
contact record. The lookup operation then follows
the path of forwarding pointers to a leaf node such
as Houston. By going higher in the search tree, the
lookup operation effectively broadens the search
area for a URL, thus resembling search algorithms
based on expanding rings.

The insert operation stores a URL at a leaf node
and creates a path of forwarding pointers leading
to that node. When a resource has a new replica
in a leaf domain, the resource’s owner inserts the
replica’s URL at the leaf domain’s node. The insert
operation starts by entering the URL in the leaf
node’s contact record, then recursively requesting
the parent node, grandparent node, and so on, to
install a forwarding pointer. The recursion stops
when the insert operation finds a node that
already contains a forwarding pointer; otherwise,
it stops at the root. The delete operation removes
the URLs and paths of forwarding pointers in a
manner analogous to the insert operation. Further
technical details are available elsewhere.®

Improvements. Obviously, the basic search tree
described so far does not yet scale. Higher-level
directory nodes, such as the root, pose serious
problems because they must store numerous con-

IEEE INTERNET COMPUTING

tact records and handle many requests. Our solu-
tion is to partition overloaded directory nodes into
multiple subnodes, each of which manages only a
subset of the contact records. We employ a hash-
ing technique that uses the URN to decide which
subnode should store each contact record.

We can also use caches to alleviate the load on
higher-level nodes. A scheme that caches URLs
won’t be effective because these can easily change
as resources become mobile. We therefore devised
a caching scheme, detailed elsewhere, called point-
er caches.” If a resource changes its URL but rarely
moves outside a domain D, we can let the directo-
ry node for D store the URL. Other nodes can cache
pointers to the directory node.
Because the resource will typi-
cally remain within D, cached
pointers will remain valid even
if the resource’s URL changes
regularly.

In this approach, whenever a
lookup operation finds a URL at
node N, it returns the URL and a
pointer to N. All nodes visited
during the lookup will subse-
quently store the pointer to N in
their local pointer cache. The
next time a lookup operation visits any of these
nodes, it will immediately be directed to N,
bypassing higher-level nodes.

alleviate

nodes.

Implications

For our HEN-to-URL resolution scheme to be scal-
able, the name and location services must support
numerous resources distributed over a large geo-
graphical area. This entails several technical chal-
lenges for each service.

Name Service

Our first requirement is for the name service to
handle numerous HFN-to-URN mappings. The
current DNS infrastructure supports about 108 host
names and e-mail destinations. By supporting only
popular Web resources, we limit the number of
HFNs stored in DNS and thereby ensure that we do
not exceed its capacity.

We can handle geographically dispersed names
by localizing lookup and update operations. DNS
uses caches to localize lookup operations. Assum-
ing the use of popular Web resources and a stable
HFN-to-URN mapping, caching will remain effec-
tive. DNS queries will obtain the URNs from the
name server cache without having to contact
remote name servers, giving nearby users local

http://computer.org/internet/

Scalable HFNs

We can also

use caches to

the load

on higher level

SEPTEMBER e OCTOBER 2001 25

Wide-Area Resource Naming

Average lookup length

10

100 1,000 10,000 100,000 le+06

Lookup operations (logarithmic)

Figure 4. Average length of a lookup operation.With increasing pop-
ularity (that is, number of lookup requests), caching decreases the
number of nodes visited in the search tree.

26

SEPTEMBER e OCTOBER 2001

access to the HFN-to-URN mapping. Name service
update operations also exploit locality. Assuming
changes to a specific part (subdomain) of the
namespace always originate from the same geo-
graphical area, we can place the name server
responsible for that subdomain in or near the
appropriate area.

In spite of its restrictions, DNS is an attractive
name service with a pervasive infrastructure.
Unfortunately, DNS was never designed to support
the HFNs we propose; some might even argue that
we are misusing it. For this reason, we impose
restrictions on the resource model and avoid scal-
ability problems in DNS that could otherwise
threaten our HFN resolution mechanism. For
instance, caching will prove ineffective in sup-
porting HFNs for unpopular resources, and DNS
might get overloaded. The caching mechanism
might also cache mappings for mobile resources in
the wrong place. Therefore, to support a more gen-
eral resource model, we need to replace DNS with
a more scalable name service. We have described
a design for such a system elsewhere.®

Location Service

Storing many URN-to-URL mappings in the Globe
location service forces us to face both storage and
processing issues. Consider, for example, the root
node, and assume that a single contact record
takes up 1 Kbyte. This record should contain the
URN, forwarding pointers, and local administra-
tive information, while still leaving space for addi-
tions such as cryptographic keys. Assuming the
worst-case scenario, in which our system supports
108 resources, the root node must store 100 Gbytes.
Our partitioning scheme lets us distribute the con-

http://computer.org/internet/

tact records over, say, 100 subnodes, resulting in 1
Gbyte per subnode. Using this scheme, the loca-
tion service’s storage requirements clearly create
no problem.

Lookup request processing poses a more serious
threat. We can ignore update requests because they
are rare compared to lookup requests. Our parti-
tioning scheme also increases the lookup process-
ing capacity, but what if it still is not enough? To
investigate, we calculated the effect of replicated
resources and simulated the effects of pointer
caching on the lookup processing load.

To measure our location service’s scalability, we
introduce the lookup length. This metric represents
the number of nodes visited during a lookup oper-
ation, and provides an intuitive measure of the pro-
cessing load in the tree. A large value means that
many nodes have been visited, resulting in a load
increase in all those nodes. It generally means that
nodes higher up in the tree (those more centralized)
have also been visited. In essence, we would like to
keep the lookup length as small as possible.

We first investigated how resource replication
affected the location service. When a resource
becomes more popular, replicas invariably prolif-
erate, and more URLs will need to be stored in the
location service. To provide optimal local access,
we distributed the replicas widely. This also creates
a search tree in which the paths of forwarding
pointers from the root to the different URLs meet
only in the root node. Assuming each node in the
tree has a fan-out of N and that M replicas are
evenly distributed across the leaf domains, we
expect that M of the N children of the root node
will have registered a replica in their respective
domain. Consequently, M out of N lookup requests
no longer need to be forwarded to the root node.
Distributing replicas evenly across leaf domains
decreases the load on the root node linearly with
the number of replicas until M = N and lookup
operations no longer use the root node.

To investigate the effects of our pointer cache
system, we conducted a simulation experiment.
We surmised that with an increasing number of
lookup operations, pointer caches should incur
higher hit ratios, in turn decreasing the average
lookup length. In our simulation, we built a search
tree of height four with a fan-out of 32, leading to
just over a million leaf nodes.

The simulation consists of inserting a single
URL at an arbitrary leaf node and initiating lookup
operations at randomly chosen leaves. Each oper-
ation uses pointer caches, possibly creating new
entries. We computed each lookup length by

IEEE INTERNET COMPUTING

counting the number of nodes visited, then com-
puted an average length. This average lookup
length should decrease with the number of opera-
tions performed.

Figure 4 shows the result of our simulation, and
confirms that lookup length decreases as the num-
ber of lookup operations increases, lightening the
load on the tree’s higher nodes. More important-
ly, the figure also shows that this effect emerges
even with small numbers of lookup operations.
Because we only support popular Web resources,
we know pointer cache entries will be reused, and
caching will therefore be effective.

The location service deals with URLs distributed
over a large geographical area by using locality
through its distributed search tree and related
lookup algorithm. By starting the lookup at the
leaf node, searching nearby areas first, and con-
tinuing at higher nodes in the tree to search larg-
er areas, the location service avoids using remote
resources when a URL proves accessible using just
local resources. Given our goal of supporting pop-
ular replicated Web resources, there should always
be a replica nearby.

Future Work
Our location service resolves HFNs to URLs by
employing two distinct mappings — one for nam-
ing resources and one for locating them. This sep-
aration aids scalability by letting us apply tech-
niques specific to each respective service. Reusing
the DNS infrastructure provides us the benefits of
an existing infrastructure and experience using it.
Recognizing the limitations DNS imposes, howev-
er, we use it simply as an example naming system
to demonstrate the feasibility of our approach.
We have implemented our HFN resolution
scheme using the Berkeley Internet Name Daemon
(BIND) and software we developed as part of the
Globe project. The initial setup involves four sites
in Europe, one in the U.S., and one in the Middle
East. We plan to use this implementation in two
experimental applications, the first dealing with
replicating Web documents, the second with dis-
tributing free software packages. These experi-
ments will, we hope, allow us to substantiate our
scalability and human-friendliness claims. M

References

1. K. Sollins and L. Masinter, “Functional Requirements for
Uniform Resource Names,” Internet Engineering Task Force
(IETF) REC 1737, Dec. 1994; available at http://ietf.org/rfc/
rfc1737.txt.

2. K. Sollins, “Architectural Principles of Uniform Resource

IEEE INTERNET COMPUTING

Name Resolution,” IETF RFC 2276, Jan. 1998; available at
http://ietf.org/rfc/rfc2276.txt.

3. P. Loshin, ed., Big Book of Lightweight Directory Access
Protocol (LDAP) RFCs, Morgan Kaufman, San Francisco,
Calif., 2000.

4. P. Vixie et al., “Dynamic Updates in the Domain Name Sys-
tem (DNS UPDATE),” IETF REC 2136, Apr. 1997; available
at http://ietf.org/rfc/rfc2136.txt.

5. M. van Steen et al., “Locating Objects in Wide-Area Sys-
tems,” IEEE Comm., vol. 36, no. 1, Jan. 1998, pp. 104-109.

6. M. van Steen et al., “Algorithmic Design of the Globe
Wide-Area Location Service,” Computer J., vol. 41, no. 5,
1998, pp. 297-310.

7. A. Baggio et al., “Efficient Tracking of Mobile Objects in
Globe,” tech. report IR-481, Vrije Universiteit, Amsterdam,
Nov. 2000.

8. G. Ballintijn and M. van Steen, “Scalable Naming in Glob-
al Middleware,” Proc. Sixth Int’l Conf. Parallel and Dis-
tributed Computing Systems, Int’l Society for Computers
and Their Applications (ISCA), 2000, pp. 624-631.

Gerco Ballintijn is a PhD student in the computer systems
group at the Vrije Universiteit in Amsterdam. He is cur-
rently completing his research on the Globe location ser-
vice. He is a student member of the IEEE and the ACM. His
research interests include naming systems, middleware,
computer networks, and operating systems.

Maarten van Steen is associate professor of computer science
at the Vrije Universiteit, Amsterdam. He has an MS in
applied mathematics from Twente University and a PhD in
computer science from Leiden University. Van Steen
worked at an industrial research laboratory for several
years before returning to academia. His research interests
include operating systems, computer networks, wide-area
distributed systems, and Web-based systems. He is a mem-
ber of the IEEE and the ACM.

Andrew S. Tanenbaum has a BS from the Massachusetts Insti-
tute of Technology and a PhD from the University of Cali-
fornia, Berkeley. He is currently a professor of computer sci-
ence at the Vrije Universiteit and dean of the inter-university
computer science graduate school, ASCI. Tanenbaum is the
principal designer of three operating systems and chief
designer of the Amsterdam Compiler Kit. He is an IEEE Fel-
low, an ACM Fellow, and a member of the Royal Dutch
Academy of Sciences. In 1994 he received the ACM Karl V.
Karlstrom Outstanding Educator Award, and in 1997 he won
the SIGCSE award for contributions to computer science.

Readers can contact the authors at gerco@cs.vu.nl or
steen@cs.vu.nl.

http://computer.org/internet/

SEPTEMBER e OCTOBER 2001

Scalable HFNs

27

