Distributed Shared Agent Representations

Frances Brazier!, Maarten van Steen', and Niek Wijngaards'

Vrije Universiteit Amsterdam, Faculty of Sciences, Department of Computer Science
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{frances, steen, niek}@cs.vu.nl
http://www.cs.vu.nl/iids

Abstract. The external representation of an agent is (part of) the em-
bodiment of an agent: other agents may observe this information. The
public representation of an agent usually contains at least the identity
of an agent, and may include profiles of the agent, profiles of the user
of an agent, an avatar, etc. In large-scale agent systems, scalability is
an important issue. Replication is a scaling technique for distributing
information over a number of locations. Replication of the external rep-
resentation of an agent results in distributed shared agent representa-
tions. This paper addresses a number of issues involved in the realisation
of such distributed shared agent representations, and briefly discusses
middleware that is being devised to support such developments. !

1 Introduction

Different definitions of agents [1][11][18][24][30] use concepts such as autonomy,
pro-activity, reactivity, social abilities, and intentional models [2][5]. Very few (if
any), however, refer to an agent’s external representation: the part of an agent
that can be observed.

This representation is the visible part of an agent: (part of) its embodiment.
This external representation may be limited to an agent’s identity (e.g. name
of owner or an IP address of the host on which it resides). It may also contain
extensive public information about an agent (e.g. its profile), or it may even
be a graphical figure (e.g. an avatar) representing an agent. The environment
of an agent includes objects, and representations of itself and other agents. It’s
obvious that an agent’s environment influences the thoughts and actions of an
agent [9][13], but it may also influence its own representation.

The distinction between an agent’s external representation and an agent’s
internal processes and knowledge makes it possible to consider new ways to im-
plement large scale systems. Section 2 discusses the problem of scalability. Sec-
tion 3 addresses the option of agent replication in this context. Section 4 presents
a short overview of middleware that is currently being designed to support such
replication. Section 5 summarizes the new areas of research involved.

! Appeared in: V. Marik, O. Stepankova, H. Krautwurmova, and J-P Briot (eds), Pro-
ceedings of the Adaptability and Embodiment Using Multi-Agent Systems, AEMAS
2001 Workshop, Prague, July 7th, 2001, pp. 230 - 237.



2 The Problem of Scalability

In the multi-agent system community, large multi-agent systems are considered
to consist of hundreds of agents, not thousands nor millions. As an example, con-
sider the claim that Auctionbot is scalable, which is supported by an experiment
with only 90 agents [31]. In the near future, however, we expect that multi-agent
systems will need to be able to scale (in terms of the number of agents and
available resources) to much larger populations. This almost immediately with-
out noticeable loss of performance, or considerable increase in administrative
complexity [16].

The current support for scalability in multi-agent frameworks is discussed in
Section 2.1. A number of scaling techniques are described in Section 2.2.

2.1 Scalability in Multi-Agent Frameworks

The term scalability is not always used to refer to architecture, services and per-
formance of systems. In some cases it is used to refer to scalable functionality.
For example, the SATRE approach [19], claims to be scalable because it supports
heterogeneous agents. Shopbot [6] claims to be scalable because its agents can
adapt to understand new websites. In both cases, the term extensibile function-
ality would seem to be more appropriate.

Researchers and developers of multi-agent frameworks are beginning to re-
alise that scalability in the sense of architecture, services and performance is an
issue. Most multi-agent frameworks (e.g. DECAF [12], InfoSleuth [17], April [15],
AgentTcl [10], JAFMAS [4], Plangent [20], DESIRE [3]) do not seem to address
the problem of scalability at all.

Other multi-agent frameworks rely on another framework to solve the prob-
lem of scalability. For example, scalablity in the CoABS (DARPA Control of
Agent Based Systems) approach [27] is based on adequate support from compu-
tational grids in providing a plug-in backplane for agents [8].

There are, however, frameworks that clearly address one or more aspects
of scalability. In ZEUS [29] scalability is defined to be the growth rate of the
maximum communication load (as a function of the number of agents). Their
conclusions are that the maximum communication load grows at worst linearly
with the number of agents. This addresses a loss of performance problem, and
is a step towards developing scalable multi-agent frameworks. In OAA (Open
Agent Architecture) [14] matchmaking agents are described which can handle
larger number of agents. The RETSINA MAS infrastructure [26] is designed
to support multi-agent systems that run on a number of LANs and to avoid
single-point of failures (e.g., in agent name services).

Turner and Jennings [28] propose to (automatically) change the organization
of agents in the multi-agent system to handle an increase in the population of a
multi-agent system. For example, more middle agents or matchmakers are intro-
duced to reduce overhead. Their approach is a possible step towards addressing
administrative problems related to scalability.



None of the aformentioned approaches addresses minimizing the loss of per-
formance as well as minimizing administrative overhead.

Research on specific services in multi-agent systems such as directory services
also address scalability. The approach taken by Shehory [23] is an example in
which agents locate agents based on each agent’s own caching lists of agents
they know. The theoretical analysis is based on a population of size 10,000; no
experiments have yet been conducted.

Although agents have an identity in all of these multi-agent frameworks, none
have explicitly distinguished explicit agent representations. Some multi-agent
frameworks offer matchmaking services - in which information about agents is
made public to some extent. None have considered using replication.

2.2 Scaling Techniques

Three scaling techniques can be distinguished to minimise loss of performance:
(1) hiding communication latencies, (2) distribution, and (3) replication.

Hiding communication latencies is applicable in the case of geographical scal-
ability, that is, when an agent system needs to span a wide-area network. To avoid
waiting for responses to requests that have been issued to remote agents or ser-
vices the requesting agent is programmed to do other useful work. This approach
does require that an agent can be interrupted when the expected response (if
any) is to be delivered.

Distribution generally involves partitioning a (large) set of data into parts
that can be handled by separate servers. A well-known example of distribution
is the natural partitioning of the set of Web pages across the approximately 25
million Web servers that are currently connected through the Internet. Other
examples of distribution include the vertical or horizontal partitioning of tables
in distributed databases [21].

When considering large-scale networks like the Internet it becomes crucial
to combine distribution with latency hiding. Unfortunately, this is not always
possible, for example when an agent simply needs an immediate response.

A third, and widely applied technique is to place multiple copies of data sets
across a network, also referred to as replication. The underlying idea is that by
placing data close to where they are used, communication latency is no longer
an issue, so that agent-perceived performance is high. Having multiple copies
means that such performance is good for all agents, no matter where they are
located.

Keeping replicas consistent introduces a consistency problem that can be
solved only by means of global synchronization. However, global synchronization
in a multi-agent system is not a realistic option. Scalable multi-agent systems
will need to support configurable and perhaps even adaptive replication strate-
gies. No single strategy will show to be optimal under all conditions. Even for
relatively simple systems such as the Web, differentiating strategies can make a
lot of difference [22].



3 Replicating Agents

As stated above: one approach to handling scalability in a multi-agent system is
to replicate agents. The distinction between an agent’s external representation
and an agent’s internal representation makes replication possible. Section 3.1
discusses what is to be replicated of an agent, Section 3.2 discusses issues that
play a role in distributed shared agent representations.

3.1 Replicating Agents or Public Representations

An agent can be seen as a a (multi-threaded) process with internal knowledge,
and an external representation. Replication of an entire agent is not an obvi-
ous option for the realisation of scalable systems (running processes in parallel
on different machines will seldom be synchronous). In some cases cloning an
agent may be a viable alternative to replication, but this is clearly application
dependent and outside the scope of this paper.

Replicating an agent on a number of hosts makes it possible to decrease the
load on each of the individual hosts. Consider, for example, an auction room.
Having an auction hall replicated on different hosts, makes it possible to decrease
the load on each individual machine. Instead of having any number of agents
having to reside on the same machine in order to participate in a given auction,
each agent’s internal state and processes need only to reside on one of the hosts
on which the auction room is replicated. Each agent’s external representation
is, however, replicated on each of the machines individually: this representation
becomes a distributed shared agent representation. The internal process and data
(or knowledge) of each agent resides on one machine. The agents do not need
to know the location of the other agents: their presence is obvious, as is the
information which needs to be shared.

Another example is that of information acquisition. An agent may wish to
be informed of interesting publications by a number of bookstores at a time:
as if it were actually in each of these bookstores at the same time. One way
to accomplish this is to replicate the agent’s external representation on each of
the bookshops sites. This representation would include a profile of an agent’s
interests, book collection, and any other relevant information. If an agent’s state
changes, e.g. new books have been acquired, the agent’s profile changes thus
changing the profile in the agent’s external representation It is as if the agent
was actually residing on each of the bookstores sites.

3.2 Issues in Distributed Shared Agent Representations

Replication of public representations of agents, i.e. distributed shared agent rep-
resentations, raises a number of issues regarding agents, and supportive mid-
dleware. These issues are related to policies (and/or strategies) for replication,
accessibility, authority, and awareness.



— A number of issues concern replication strategies. The first issue is whether
the middleware enforces a specific replication strategy, or whether each agent
or system is able to specify its own replication strategy.

— A number of issues concern accessibility policies. Which agent may access
which part of a public representation?

— A number of issues concern authorisation policies. Which agents are allowed
to change part of the public representation of an agent? Only the agent
itself? Other (authorized) agents? All agents? A human agent?

— A number of issues concern awareness policies. Does an agent notice modifi-
cations to its public representation? Does the agent know that replicas exist?
Their location? Which agent observes its replica?

By combining choices, more and more complex situations may arise. Consider
for example the combination of:

— public representation is replicated as soon as another agent wishes to observe
it (i.e., many replicas)

— all agents may change a specific part of the public information of an agent

— an agent is aware of all changes to its public information.

The middleware needed to support this combination of policies, involves more
expensive mechanisms (in terms of communication between entities in the multi-
agent system) than a situation in which only the agent itself may modify its
public representation. The question may even arise whether the more complex
case scales well.

4 AgentScape: a Scalable Agent Framework

AgentScape is a currently being designed to support the design and development
of worldwide distributed, scalable, secure, and extensible agent systems. It aims
to provide support in two ways. First, support is provided on the level of a basic
agent operating system. Second, support is provided by services, such as location
and directory services, automated creation of agents, and management of agents,
objects, locations and groups. AgentScape provides basic building blocks needed
to build such systems.

AgentScape is a basic agent middleware system, intended to be usable for
a wide range of multi-agent applications. As middleware, it offers primitives on
the level of agents, shielding application developers from details at lower levels.
In a sense, AgentScape is similar to UNIX. Within UNIX, everything is a file,
on which operations are defined. Within AgentScape, two main concepts are
distinguished: agents and objects. An agent is an active process, while an object
is passive. Operations are defined on agents, akin to file operations in UNIX:
move (mv), change owner (chown), change group (chgrp), change security modus
(chmod), create, remove (rm), etc. Similar operations are defined on objects.
Unique to AgentScape is the use of objects that are physically distributed across



multiple machines, and that encapsulate their own distribution strategy. These
objects are adopted from the Globe wide-area distributed system [25].

An important issue for AgentScape is that its model of agents and objects
enable scalable solutions. In our approach, agents are expected to be mobile and
can be implemented in different ways. This approach allows for implementing
applications that require a high degree of interoperability across heterogeneous
platforms. For a similar reason, our objects have self-managing capabilities. In
contrast, most distributed-object models are based on remote objects in which
the object state is not distributed, and is managed by the server the object is
located [7]. Clients are only provided transparent access to an object through a
proxy.

An agent in AgentScape consists of an external, visible part and and an
internal, invisible part. The external visible part of an agent may be observed by
other agents, and contains the public representation of the agent. The internal
(invisible) part of an agent includes local information, its process, data and/or
knowledge. The visible part of an agent may be replicated, the invisible part of
an agent is not replicated. The visible part of an agent may be (nearly) empty.
Any amount of information may be included in the public representation of an
agent. The public representation of an agent is implemented as a distributed
shared GLOBE object [25].

An agent operating system intended to be used in a worldwide setting needs
services to enable retrieval of, for example, agents. Specific directory services
are being developed, with which agents, distributed (and possibly replicated)
objects, and groups of agents or objects can be found. Another service is a multi-
agent factory with makes automated agent creation and modification possible.
Finally, management services are being developed to reactively and pro-actively
control agents, objects, locations, and groups in AgentScape. The challenge for
these services is that they too need to be scalable across a worldwide network
and they need to be able to support vast numbers of agents and objects.

5 Discussion

Distinguishing an external representation of an agent from its internal processes
and knowledge, makes it possible to consider replication as an option with which
large scale multi-agent systems can be devised. The challenge is to design an envi-
roment in which replication is possible and effective. Which replication strategies
are most useful and applicable, which accessibility, authorisation and awareness
policies are needed, are clearly, as yet, unanswered. Scalable services to sup-
port such environments, is another challenge. These services address the notion
of finding ”agents” without necessarily having to contact a home address (not
all agents necessarily have a home address), and finding objects, building new
agents and adapting existing agents. Further research is clearly required!



6 Acknowledgements

This work was supported in part by NLnet Foundation. The authors wish to
thank Guido van ’t Noordende and Andy Tanenbaum for discussions on agents
and agent platforms.

References

1. J.M. Bradshaw, (ed). “Software Agents.” AAAI Press / MIT Press, 1997.

2. F.M.T. Brazier, B. Dunin-Keplicz, J. Treur and L.C. Verbrugge. “Modelling Internal
Dynamic Behaviour of BDI agents.” In: J-J. Meyer and P. Schobbes, (eds.), Formal
Models of Agents, Selected papers from final ModelAge Workshop, Springer Verlag,
Lecture Notes in AI, Vol. 1760, pp. 36-56, 1996.

3. F.M.T. Brazier, B. Dunin-Keplicz, N. Jennings, and J. Treur. “DESIRE: Mod-
elling Multi-Agent Systems in a Compositional Formal Framework..” International
Journal of Cooperative Information Systems, special issue on Formal Methods in
Cooperative Information Systems, 6:67-94, 1997.

4. D. Chauhan. “Developing coherent multiagent systems using jafmas.” In Proc.
International Conference on Multi Agent Systems, ICMAS98, Cite des Sciences -
La Villette, Paris, France, July 1998.

5. D.C. Dennett. “The Intentional Stance.” Cambridge: MIT Press (1987).

6. R. B. Doorenbos, O. Etzioni, and D. S. Weld. “A Scalable Comparison-Shopping
Agent for the World-Wide Web.” In W. L. Johnson and B. Hayes-Roth, (eds.),
Proc. Proceedings of the First International Conference on Autonomous Agents
(Agents’97), pp. 39-48, Marina del Rey, CA, USA, 1997. ACM Press.

7. W. Emmerich. Engineering Distributed Objects. John Wiley, New York, 2000.

8. 1. Foster and C. Kesselman, (eds.). Computational Grids: The Future of High Per-
formance Distributed Computing. Morgan Kaufman, San Mateo, CA., 1998.

9. J.S. Gero. “Conceptual Designing as a Sequence of Situated Acts.” In: I. Smith,
(ed.), Artificial Intelligence in Structural Engineering. Berlin: Springer, pp. 165-177,
1998.

10. R. Gray, D. Kotz, G. Cybenko, and D. Rus. “Agent Tcl.” In W. Cockayne and
M. Zyda, (eds.), Proc. Mobile Agents: Explanations and Examples. Manning Pub-
lishing, 1997.

11. N.R. Jennings and M.J. Wooldridge, (eds.). “Agent Technology; Foundations,
Application, and Markets.” Springer Verlag, Berlin (1998).

12. J. G. Keith. “Towards a Distributed, Environment-Centered Agent Framework.

13. M.L. Maher, S. Simoff and A. Cicognani. “Understanding Virtual Design Studios.”
London: Springer-Verlag, 2000.

14. D. Martin, A. Cheyer, and D. Moran. “The Open Agent Architecture: a frame-
work for building distributed software systems.” Applied Artificial Intelligence,
13(1/2):91-128, 1999.

15. F. McCabe and K. Clark. “April: Agent Process Interaction Language.” In N. Jen-
nings and M. Wooldridge, (eds.), Proc. Intelligent Agents, volume 890 of Lecture
Notes in Computer Science. Springer-Verlag, 1995.

16. B. Neuman. “Scale in Distributed Systems.” In T. Casavant and M. Singhal,
(eds.), Readings in Distributed Computing Systems, pp. 463-489. IEEE Computer
Society Press, Los Alamitos, CA., 1994.



17. M. Nodine, B. Perry, and A. Unruh. “Experience with the InfoSleuth agent ar-
chitecture.” In Proc. Proceedings of the AAAI-98 Workshop on Software Tools for
Developing Agents, 1998.

18. HS. Nwana. “Software agents: an overview.
11(3):205-244, 1996.

19. J. B. Odubiyi, D. J. Kocur, S. M. Weinstein, N. Wakim, S. Srivastava, C. Gokey,
and J. Graham. “SAIRE-a scalable agent-based information retrieval engine.” In
Proc. Proceedings of the first international conference on Autonomous agents, pp.
292-299, Marina del Rey, CA USA, Feb. 1997.

20. A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and S. Honiden. “Plangent: An Approach
to Making Mobile Agents Intelligent.” IEEE Internet Computing, 1(4), July 1997.

21. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, Upper Saddle River, N.J., 2nd edition, 1999.

22. G. Pierre, I. Kuz, M. van Steen, and A. Tanenbaum. “Differentiated Strategies for
Replicating Web Documents.” Comp. Comm., 24(2):232-240, Feb. 2001.

23. O. Shehory. “A Scalable Agent Location Mechanism.” In Proc. Lecture Notes in
Artificial Intelligence, Intelligent Agents VI, 1999.

24. Y. Shoham. “Agent-oriented programming.” Artificial Intelligence,60:51-92, 1993.

25. M. van Steen, P. Homburg, and A. Tanenbaum. “Globe: A Wide-Area Distributed
System.” IEEE Concurrency, 7(1):70-78, Jan. 1999.

26. K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. “The RETSINA MAS
Infrastructure.” Technical Report CMU-RI-TR-01-05, Robotics Institute Technical
Report, Carnegie Mellon, 2001.

27. C. Thompson, T. Bannon, P. Pazandak, and V. Vasudevan. “Agents for the
Masses.” In Proc. Agent-Based High Performance Computing - Problem Solving
Applications and Practical Deployment at Autonomous Agents 1999, Seattle, Wash-
ington, USA, May 1999.

28. P. J. Turner and N. R. Jennings. “Improving the Scalability of Multi-agent Sys-
tems.” In Proc. Proc. 1st International Workshop on Infrastructure for Scalable
Multi-Agent Systems, 2000.

29. P.D. Wilde. “Stability, Fairness and Scalability of Multi-Agent Systems.”

30. M. Wooldridge and N. Jennings. “Intelligent agents: theory and practice.” The
Knowledge Engineering Review, 10(2):115-152, 1995.

31. P. R. Wurman, M. P. Wellman, and W. E. Walsh. “The Michigan Internet Auc-
tionBot: A configurable auction server for human and software agents.” In K. P.
Sycara and M. Wooldridge, (eds.), Proc. Proceedings of the 2nd International Con-
ference on Autonomous Agents (Agents’98), pp. 301-308, New York, 9-13, 1998.
ACM Press.

” The Knowledge Engineering Review,



