Mechanisms for effective caching in the Globe location service*

Aline Baggio, Gerco Ballintijn & Maarten van Steen

Vrije Universiteit — Globe Group
De Boelelaan 1081a — 1081 HV Amsterdam
The Netherlands
http://www.cs.vu.nl/globe/

Abstract

Globe is a wide-area distributed system that supports
mobile objects. To track and locate objects, we use a
worldwide distributed location service, implemented
as a search tree.

An object registers its current position by storing
its address in a nearby leaf node of the tree. This
knowledge propagates up to the top of the tree, so
every object can be found from the root. Remote
objects can cache the location of an object. However,
if the object moves, the cache entry is no longer valid.

In this paper, we show how caching can be made
to work effectively even in the presence of mobile ob-
jects.

1 Introduction

In recent years, the interest in worldwide mobil-
ity and ubiquitous computing has increased consid-
erably. The constantly growing number of mobile
phones is one visible aspect of this interest; the com-
mon use of laptop computers and handheld devices
is another. Furthermore, portable hardware increas-
ingly offers Internet connectivity. For example, it is
possible to read one’s e-mail from a mobile phone,
to browse the World-Wide Web with devices such as
3Com’s Palm Pilot [1] or Cyrix’s Webpad [5].

*Ninth ACM SIGOPS European Workshop, September
17th to 20th, 2000, Kolding, Denmark

Mobile entities such as hosts (i.e. laptops) or soft-
ware objects usually require special measures for han-
dling both resource discovery and reachability. Re-
source discovery relates to discovery of nearby ser-
vices when visiting new networks, such as printers,
file or name servers [4, 6], or World-Wide Web caches.
Among other things, reachability refers to locating
mobile entities, and ensuring location accuracy by
means of location updates and/or use of forwarding
pointer techniques [13].

One approach to tracking and locating objects is
the use of a hierarchical search tree [13, 15, 16]. The
tree is built as a hierarchy of domains, that is, geo-
graphical or administrative areas, as for DNS. Ob-
jects register at a leaf node, but this information
propagates up to the top of the tree, leaving a trail
of pointers behind. In this way, every object can be
located starting at the root, if need be.

Unfortunately, this mechanism can be rather inef-
ficient: to retrieve an object’s address, any look-up
request may have to go to the root and follow the
entire path of forwarding pointers. Efficiency can be
improved by caching the result of previous requests.
However, with highly mobile objects, the object-to-
address mapping is not stable enough to be cached.
An alternative strategy that has been proposed for
Personal Communication Services (PCS) systems, is
that a look-up request can bypass intermediate nodes
in the tree by using shortcut links [7].

Rather than only short-cutting the path of a look-
up request, we would like to reach the appropriate



node directly, that is, where the object’s address is
currently stored. We call this node the address’ stor-
age location. Instead of caching an address (i.e. the
content), a requesting site will cache a pointer to the
address’ storage location (i.e. the container of the ad-
dress).

This scenario works well only when the object re-
mains fixed or migrates within its storage location’s
domain. If the object regularly moves to other do-
mains, we may need to find another, larger domain
that covers the area in which the object apparently
always moves. Within this domain, the object may
migrate as often as it likes. We call the node re-
sponsible for this domain the address’ stable storage
location.

The selection of the stable storage location leads to
a tradeoff between stability and accuracy. For exam-
ple, caching a pointer to a leaf node where an address
is stored is accurate but may be unstable. If the ob-
ject is mobile, its address’ storage location will often
change, and the cache entry will become invalid too
quickly to be actually usable. In contrast, caching a
pointer to the root node ensures stability but is inac-
curate. Moreover, it unnecessarily puts load on the
root node.

In this study, our goal is to find the best node in
the tree which satisfies both stability and accuracy
concerns. Stability requires finding the lowest node
that always knows about the requested object. Ac-
curacy then requires storing the address in this node,
so that the requesting site can cache a pointer to it
and retrieve the current address.

This paper is organized as follows. Section 2 briefly
presents the Globe project, which provides the con-
text of this research, and gives further details about
the Globe location service and its requirements for
supporting mobile objects. Section 3 shows that sta-
ble storage locations can help in efficiently access-
ing mobile-object addresses, and describes how to de-
tect mobility. Section 4 gives details about the use
of storage locations and how to store addresses up-
wards or downwards in the location service. Finally,
Section 5 discusses the related work and Section 6
presents some conclusions.

2 Locating objects

Our research is part of the Globe project. Globe [15]
is a wide-area distributed system that provides a
scalable infrastructure to support a large number of
objects, users and machines spread over the Inter-
net. Among other basic services, Globe provides a
location-independent naming scheme. Location in-
dependence is achieved by separating proper naming
from locating and tracking issues. To this end, Globe
distinguishes a naming service and a location service.

These two services use three different ways to des-
ignate an object: object name, object handle and
contact address. An object name is a human-friendly
character string [3]. An object handle is a unique
object identifier. It is independent of the object loca-
tion. Finally, a contact address makes it possible to
access the object. It is location dependent: it refers to
the physical location of the object, and specifies the
communication protocol to use to contact the object.
The Globe naming service is in charge of mapping
names to object handles, while the location service is
in charge of mapping object handles to contact ad-
dresses.

The Globe location service is structured as a tree.
As in PCS systems, the network is divided into small
leaf domains which are aggregated into larger ones.
The root domain finally covers the entire network.
In the Globe location service, each domain is repre-
sented by a directory node. A directory node is in
charge of storing mappings between object handles
and contact addresses for objects that belong to its
domain. To do so, it uses a separate contact record
for each object (Figure 1). A contact record is cre-
ated when a new object is registered in the location
service; it is deleted when the object is removed.

A contact record is itself composed of contact fields,
one for each subdomain. A contact field holds either
nothing, a set of addresses at which an object can
be contacted, or a forwarding pointer. The latter
points to the child node responsible for the subdo-
main where an address for the object can be found.
Each contact address can be retrieved by following a
path of forwarding pointers from the root to the node
where the address is stored. Part of such a path is



s -

_-~" Contact eCE;ld\\\\\
oL

empty)|

The Netherlands

D Empty contact field
. Contact field with addriss(es)

‘ . H D ‘ ‘ D H D ‘ Contact field with forwating

Paris pointer

Bordeaux Rotterdam ~ Amsterdam

Figure 1: Location service internals

shown in Figure 1, from Europe to Paris).

To update and use these data, the location service
supports requests such as address look-up, address
insertion or address deletion. All the invocations (ad-
dress look-up, insertion, deletion) are initiated at the
leaf nodes. For example, if Rotterdam in Figure 1
receives a look-up request for the object in Paris, the
request will go up to the first node where the object
is known (Furope). It will then follow the forwarding
pointers down to Paris, where the address is actually
stored.

We saw that in the location service each address
has to be reachable from the root. Following any path
of forwarding pointers guarantees an address will ac-
tually be found. As a consequence, when a contact
record becomes empty, the path of forwarding point-
ers to this contact record is removed.

In our model, a mobile object physically migrates
from one computer to another, for example from Am-
sterdam to Paris. Once this migration is completed,
the object is no longer considered present at the old
location. To simplify our discussion, we ignore repli-
cated objects in this paper. In the location service, an
object migration is seen as an address delete request
coupled with an insert request for the same object.

We distinguish two kinds of mobile objects: objects
that migrate without disconnecting from the network,
and objects that do disconnect. The former are still
reachable during migration, such as a mobile phone.
The latter become unreachable as soon as they start
migrating, such as a laptop computer physically dis-

connected from any network. Reachability during mi-
gration can be obtained, for example, by installing a
proxy at the mobile host’s “home” location or at its
old location, prior to the migration. The proxy will
handle incoming messages or requests instead of the
real object. For a mobile phone, a proxy could act as
a voice mail server.

3 Stable storage locations

Within Globe, the location-service optimization has
two aspects. First, by storing a mobile-object’s ad-
dress in a stable storage location, we reduce the num-
ber of forwarding pointers to be changed when the
object migrates, thus optimizing update operations.
Second, by caching pointers to stable locations, we
can retrieve an object’s address in two hops: one for
going to the cache and one to the location that stores
the object’s address, thus optimizing the look-up op-
erations.

To effectively use location caching, the location ser-
vice has to detect mobility, select the best stable stor-
age location for a given migration pattern, and actu-
ally store the object’s address at this location. If
the stable location is placed too low in the tree, the
object may have moved outside that region when a
lookup is done. If it is placed too high, it will be in-
efficient (having all the European objects in the Eu-
ropean node is not practical).

To detect mobility, the location service spies on mo-
bile object migration patterns. It delegates this task
to the lowest-level node in which there are always
forwarding pointers to the object’s address (i.e. the
lowest-level node where the contact record is never
deleted). This node is the least common ancestor
(LCA) of the set of leaf nodes in which migrations
take place. In Figure 1, for example, if an object fre-
quently migrates between Paris and Amsterdam, its
address will alternately be stored in the Paris and
Amsterdam leaf node, respectively. FEurope is the
lowest-level node (on the path up to the root) from
which the contact record is never deleted. It always
stores a forwarding pointer to one of its child nodes as
there is always an address in one of each. The stable
storage location and LCA for this migration pattern



is therefore Furope.

The LCA is given a monitoring task. It has to
record the frequency at which the object migrates. It
does so by observing update requests it receives for
this object. Monitoring data are kept within the con-
tact record itself. They are composed of creation and
modification timestamps, as well as a weighted his-
tory of events that is aggregated into a single value.
The simple history formulas are as follows, H repre-
senting the different history values over time, T' the
modification timestamps, D the duration between the
last two changes and a being the weight parameter.

D=T;-T;
Hi:a*D—i—(l—a)*Hi,l

The history and the timestamp are initialized as fol-
lows, Tereation being the time at which the contact
record was created at the LCA.

Ho =0
TO = Tcreation

Whenever the history values decreases below a
given mobility threshold, the LCA considers the ob-
ject mobile enough to store its address locally in its
own contact record. The mobility threshold is a tol-
erated frequency of migrations that depends on the
level of the LCA in the tree. The higher the LCA is
in the tree, the lower the threshold becomes, and the
more difficult it is to store an address at that node.
What the threshold values should exactly be is still
to be determined through experiments.

The modification timestamps are used to calcu-
late the duration between two changes of the contact
record. They register changes that occur on different
contact fields for the same object. Therefore, if an
object migrates between different subdomains of the
LCA, the history is regularly updated.

That is not the case any more either if the object
does not move any more, or if it moves only in one
of the LCA’s subdomains. In other words, problems
arise if history updates no longer take place. Assume
that the LCA stores the current address of an object.
A last modification time far in the past indicates that
this LCA is no longer appropriate for storing the ob-
ject’s current address. This state triggers the selec-
tion a new LCA.

From time to time, the location service therefore
has to check whether the last modification timestamp
has reached a maximal tolerated value. This leads to
the following formula, where T7,,., is the current time
and Max the time threshold dependent of the LCA
level.

Thow — 15 > Max

Checking the last modification timestamp can be
triggered either when an object’s address is looked
up, or by running a background process. The latter
can either be periodic, such as a garbage collection
process, or can occur as the need arises, for example
if the maximal storage capacity of the LCA is almost
reached.

4 Storing addresses upwards

and downwards

The location service has to change the storage lo-
cation according to the object’s behavior. This is
achieved in two ways. First, by storing an address
upwards in the location service tree when an object
starts migrating within a broader domain with re-
spect to its current LCA. Second, by storing an ad-
dress downwards when an object narrows its migra-
tion range (and henceforth migrates within one of the
current LCA’s subdomains), or when the object does
not migrate anymore (the object is now fixed).

4.1 Storing upwards

Storing upwards is done using the insert and delete
requests that constitute a migration. There are two
alternatives: either the location service first deletes
the old address and then inserts the new one, or it
does the insert first and then the delete.

When the delete occurs first, the contact-record’s
statistics in the LCA can be lost, as well as the path of
forwarding pointers from the root to the LCA. Later
on, when inserting the new address, this path will
have to be re-established. Preferably, we want to
avoid breaking down and later building up again this
part of the path of forwarding pointers.



In contrast, if the insert operation takes place first,
none of these problems occur. For example, the part
of the current path from the root to the LCA is left
unaltered. The location service has now simply to
ensure that the LCA stores the address instead of
any of its siblings. In conclusion, matters are greatly
simplified if we can always ensure that the insert op-
eration for the new address is carried out before the
delete of the old one.

A simple and naive solution consists of starting the
insert operation, waiting for it to complete, and only
then starting the delete. In a worldwide distributed
system, the propagation of the insert request may
take a long time. This solution can therefore intro-
duce considerable delays before the delete operation
can be carried out.

This solution is appropriate for objects that remain
reachable during migration, possibly by means of a
proxy. For other types of mobile objects, the loca-
tion service needs to ensure that the old address is
not looked up, as it is no longer valid. Therefore, the
location service first invalidates the old address, pre-
venting other objects from using it, and then simply
carries out the delete after the insert has taken place.
Details are still subject to further study.

It is important to note that when an object mi-
grates outside its LCA’s domain, all the statistics
gathering and the selection of the stable storage loca-
tion have to start all over again. The default behavior
is then to insert the address in the leaf node of the
domain where the object migrated to.

4.2 Storing downwards

Downwards storage is achieved by allowing an LCA’s
child node to request the addresses of objects that
have narrowed their migration range. A child node
sends a specific request to its parent node, that is, the
LCA, and specifies which address it wants. Upon re-
ceipt of such a request, the LCA can decide whether it
wants to keep the address itself. If so, the LCA gives
the address to its child node and stores a forward-
ing pointer to it. Otherwise, the request is simply
rejected.

The child node has to know when to request an

address. To that end, the LCA triggers downwards
storage by sending its child node a specific notifica-
tion. Furthermore, it is the task of the LCA to de-
termine the subdomain, and therefore the child node,
where to send both the address and the notification.
It is important to note that, later on, the LCA can
still reject a downwards storage request it has ini-
tiated. This approach is mainly motivated by the
need for stateless nodes. The location service nodes,
of course, have to maintain their own state includ-
ing contact records databases, pending requests or
tree architecture. However, they are stateless with
respect to events happening at their parent or child
nodes. For this reason, the LCA will treat the request
for an address by its child node, as if it sees it for the
first time.

5 Related work

Many experiments have shown that location-based
names are not sufficient for locating mobile hosts or
objects [2, 6, 8, 9, 10, 11, 12], even if their mobil-
ity rate is quite low. Common architectures of dis-
tributed location services leads to two approaches:
a two-tier scheme and a tree-structured hierarchical
scheme.

The first approach (i.e. two-tier schemes) uses
home databases located in a predefined network zone.
Each mobile entity is assigned both a network zone
and a home which becomes permanently responsible
for the mobile entity. This home database is in charge
of maintaining the current location of the mobile en-
tity up-to-date, and answers location requests. This
approach has been used for example with GSM [14]
or Mobile IPv6 [9].

The second approach, on which our mechanisms
are based, is the tree-structured hierarchical scheme,
which have been long used in telephony. The solu-
tion proposed in [7] uses such a hierarchical approach
for PCS systems. It aims at reducing network traf-
fic when locating mobile entities by using caches as
well as shortcut links. It leads to cache pointers to
intermediate nodes where the mobile host is known.
In this context, caching is used to reduce the length
of the path of forwarding pointers to be followed by



a search request. In our approach, caching is made
more accurate by caching a pointer to the node where
the address is currently stored.

6 Conclusion

The purpose of this study is to provide an efficient
location service for mobile objects. We consider a
distributed search tree, whose nodes store addresses.
Optimizing such a location service has two aspects:
ensuring a fast and accurate response when looking
up objects, and minimizing the changes to be done in
the tree when updating addresses (update of forward-
ing pointers). The use of what we call stable address
storage locations helps for both of these aspects.

In the Globe location service, it is relatively sim-
ple to identify stable locations. The location service
collects statistics about object migrations. Whenever
required, it has to ensure that the object’s address is
stored in the stable location.

The stable storage location is strongly dependent
on the object’s migration pattern. Each time the mi-
gration pattern changes, the location service has to
re-evaluate the stable location and ensure that it is
still relevant. If not, a new one has to be found, and
the address is transferred to that node.

Further research on an effective location service
mainly concern experiments. We intend to build a
cache for storing pointers to stable storage locations.
An optimized look-up operation capable of using the
stable storage locations will be necessary as well. We
plan to conduct experiments with real traces of ob-
ject accesses. To that end, we will use access re-
quests from the World-Wide Web and other applica-
tions such as “I seek you” (ICQ) tools.

References

[1] 3Com. Palm VII connected organizer, 1999. http://www.
3com.com/palm/palm_vii/palm_vii.html.

[2] AWERBUCH, B., AND PELEG, D. Concurrent on-line track-
ing of mobile users. In ACM SIGCOMM Symposium on
Communication, Architecture and Protocols (Oct. 1991).

[3] BALLINTLN, G., VERKAIK, P., AMADE, E., VAN STEEN,
M., AND TANENBAUM, A. S. A Scalable Implementation

(10]

(11]

(12]

for Human-Friendly URIs. Tech. Rep. IR-466, Vrije Uni-
versiteit, Department of Mathematics and Computer Sci-
ence, Oct. 1999.

BuAGgwAT, P., PERKINS, C. E., AND TRIPATHI, S. K.
Transparent resources discovery for mobile computers. In
IEEE Workshop on Mobile Computing Systems and Ap-
plications (Santa Cruz, CA, US, Dec. 1994).

Cyrix. Webpad, 1999. http://www.google.com/search?
g=cache:www.cyrix.com/html/emerging/webpad/
wp_bkgrd.htm.

FORMAN, G., AND ZAHORJAN, J. The challenges of mobile
computing. IEEE Computer (Apr. 1994), 39-47.

JAIN, R. Reducing Traffic Impacts of PCS using Hierar-
chical User Location Databases. In International Confer-
ence on Communication (1996), IEEE.

JANNINK, J., LAM, D., SHIVAKUMAR, N., Wibowm, J.,
AND Cox, D. C. Efficient and flexible location man-
agement techniques for wireless communication systems.
ACM/Baltzer Science Publishers Wireless Networks 3, 5
(Oct. 1997), 361-374.

JOHNSON, D. B., AND PERKINS, C. Mobility support in
IPv6. Internet Draft, Nov. 1998.

KRISHNA, P., VAIDYA, N. H., AND PRADHAN, D. K. Static
and adaptive location management in mobile wireless net-
works. Computer Communications (special issue on Mo-
bile Computing) 19, 4 (Mar. 1996).

LIN, Y. B. Determining the user locations for personal
communications networks. IEEE Transaction on Vehic-
ular Technology 438, 3 (1994), 466-473.

MOHAN, S., AND JAIN, R. T'wo user location strategies for
personal communications services. IEEE Personal Com-
munications 1, 1 (1994), 42-50.

Piroura, E. Locating objects in mobile computing.
IEEE Transactions on Knowledge and Data Engineering
(2000).

SCOURIAS, J. An overview of the Global System for Mobile
communications. Tech. rep., University of Waterloo, May
1995.

VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A.
Globe: A Wide-Area Distributed System. I[EFEE Con-
currency 7, 1 (Jan. 1999), 70-78.

WANG, J. A Fully Distributed Location Registration
Strategy for Universal Personal Communication Systems.
IEEE Journal on Selected Areas in Communication 11,
6 (Aug. 1993), 850-860.



