Scalable Naming in Global Middleware

G. C. Ballintijn
Faculty of Sciences
Vrije Universiteit
Amsterdam
The Netherlands

Abstract

Middleware systems that are distributed worldwide
are difficult to build due to all kinds of scalability is-
sues. Problems already start when considering how
naming should be done. It is commonly thought that
organizing symbolic names into a hierarchical name
space, and subsequently distributing the implementa-
tion of that space in a hierarchical fashion as well,
is appropriate for worldwide naming. This solution
is adopted by DNS. We argue that such approaches
are not suited for naming in future global middleware
systems. Instead, name space implementations should
make heavily use of flexible and large-scale replication
in order to exploit locality as much as possible. Cur-
rent systems cannot be easily adapted to this extent.
We describe a novel approach to implementing naming
systems in large-scale, worldwide distributed middle-
ware.

Keywords: symbolic names, naming systems, dis-
tributed systems, wide-area systems.

1 Introduction

To facilitate the development of distributed applica-
tions, middleware systems provide a high degree of dis-
tribution transparency. Unfortunately, current mid-
dleware systems are designed for local-area networks
only. However, it becomes increasingly unrealistic to
assume that a group of users is dispersed only across
a relatively small area, given the emergence of global
virtual communities, such as virtual enterprises and
Internet social communities. These global communi-
ties need the same distribution transparency as offered
by traditional middleware, but are also in need for
scalable systems.

The problem is that the approaches used in current
middleware systems are inherently limited in scalabil-
ity. As we argue elsewhere [17], a major source of
scaling problems is caused by the fact that most sys-

M. van Steen
Faculty of Sciences
Vrije Universiteit
Amsterdam
The Netherlands

A. S. Tanenbaum
Faculty of Sciences
Vrije Universiteit
Amsterdam
The Netherlands

tems are still based on a single-server, multiple-client
model. This model is not suited for wide-area commu-
nication, which is characterized by long latencies and
unreliable transport mechanisms, leading to a consid-
erable loss of performance.

Another major source of scaling problems comes
from the limitations of services that form part of mid-
dleware. In this paper, we address one particular im-
portant service, namely naming. A naming service
allows different users to find, access, and share dis-
tributed resources. No middleware can do without a
proper naming service. Consequently, if the implemen-
tation of the naming service does not scale, it hardly
makes sense to put any effort in attempting to scale
other parts of the middleware system.

As we argue in this paper, all currently imple-
mented naming systems lack proper scalability in the
face of general naming requirements. These systems
not only include those implemented for middleware
such as CORBA [10] and DCE [12], but also the Inter-
net’s Domain Name System (DNS) [1, 6]. Their main
problem is that a name can only be resolved at the
specific, static location where it is stored. This depen-
dency prohibits scalable name resolution for objects
that are not statically tied to a single location, even
if an object changes location only once in its lifetime.
The location-dependency problems occur at different
levels of abstraction: from low-level object references
to high-level symbolic names.

In this paper, we show what is wrong with current
naming systems, including those for wide-area net-
works, and why their implementations are unsuitable
for global middleware where a general-purpose naming
solution is needed. We propose a new naming archi-
tecture supporting user-defined location-independent
names. An improvement over existing architectures
is that it uses the location independence to store
names at convenient, dynamically chosen locations,
and thereby implement scalable name resolution. We
further show how to implement scalable worldwide

naming systems using this architecture. To simplify
our discussion, we concentrate in this paper on object-
based middleware systems only.

The rest of this paper is structured as follows. Sec-
tion 2 describes how naming is used in different places
in middleware, and what problems can occur. Sec-
tion 3 describes the name space model we support and
other naming service characteristics. In Section 4, we
describe the architecture of our naming service. Sec-
tion 5 then discusses how our naming architecture sup-
ports scalability. In Section 6 we discuss related work
and we draw our conclusions in Section 7.

2 Names in Middleware Systems

Names are used in middleware systems at different
levels of abstraction. At the lowest level of abstrac-
tion, objects are named through local pointers. These
pointers allow a client to invoke methods on an ob-
ject and are usually directly interpreted by the hard-
ware. At a higher level of abstraction, objects are
named through systemwide object references. Object
references allow a client process to bind to an object.
This binding procedure effectively resolves an object
reference to a local pointer.

At yet a higher level of abstraction, objects are re-
ferred to through user-defined symbolic names. Nor-
mally, these names are organized in hierarchical name
spaces, such as in the UNIX file system or DNS. The
symbolic names are usually bound to object refer-
ences. Besides symbolic-naming systems, there are
also property-based naming systems. These systems
are also known as directory services or traders. A well-
known example is the X.500 directory service [11].

In this paper, we do not consider directory services
or local pointers. Instead, we concentrate on object
references and symbolic-naming systems only.

2.1 Scalability Problems with Object Ref-
erences

To use an object, we first need to resolve its object
reference to a local pointer. The resolution process re-
sults in the creation of a local implementation of that
object’s interface. A pointer to the implementation is
subsequently returned. We assume, for this discussion,
without loss of generality, that local implementations
are mere proxies that communicate with a remote im-
plementation of the object.

To make resolution of the object reference simple
and efficient, an object reference generally contains all
information needed to contact the referred object. In
CORBA [10], for example, object adapters generate

references for the objects they manage. In these refer-
ences, they encode the network address of the server
at which they reside. As we argue in [16], encoding
location-dependent contact information in an object
reference can never scale worldwide.

The main problem with encoding location informa-
tion is that once the object moves to another loca-
tion the reference becomes invalid. Middleware sys-
tems use techniques such as forwarding pointers or
broadcast to deal with this situation (see, for exam-
ple, [2, 9, 13]). However, both techniques have inher-
ent scalability problems that make them unsuitable for
global middleware. It is also unclear how forwarding
pointers can deal with heavily-replicated objects.

Our solution to these problems is the introduction
of persistent location-independent object identifiers.
To use an object, we let a location service resolve the
object’s object identifier to what we call contact ad-
dresses. A contact address describes exactly how and
where an object can be contacted, and is similar to an
object reference in systems like CORBA. The mapping
of object identifier to contact address is transient, it
can change over time.

An important property of our location service is
that when it looks for an object’s contact addresses,
it starts to search in the proximity of the client. It
basically uses an efficient expanding-ring search algo-
rithm. Using this property, our location service finds
the nearest contact address first, thus exploiting local-
ity and improving scalability. The implementation of
our wide-area location service is described in [18].

2.2 Scalability Problems with Symbolic
Names

Existing naming systems that support symbolic
names have a number of scalability problems that
make them unsuitable for global middleware systems.
The problems are not immediately obvious, and are
best illustrated by taking a look at DNS.

DNS provides an extensible hierarchical name space
which is primarily used to name Internet hosts. In
the naming hierarchy, more general naming author-
ities delegate responsibility for parts of their name
space (subdomains) to more specific naming author-
ities. For example, the naming authority responsible
for the .com domain, delegates the responsibility for
the intel.com domain to the Intel company. This al-
lows Intel to add to its domain what ever subdomain
or hostname it wants.

Resolving a hostname in DNS consists, conceptu-
ally, of contacting a sequence of name servers. The
domains stored by this sequence of name servers are

increasingly specific, allowing the resolution of an in-
creasing part of the hostname. For example, to resolve
the hostname www.intel.com, the resolution process
visits, in turn, the name servers responsible for the
root (i.e., “.”), com, and intel.com domain, respec-
tively. The last name server will be able to resolve the
complete hostname.

DNS is claimed to scale worldwide if it can be
assumed that name-to-address mappings do not fre-
quently change. The reason is that name servers can
effectively cache mappings and intermediate results
during name resolution. This cached information can
be used to resolve names more efficiently the next time.
This approach has indeed shown to work for the cur-
rent name space.

However, the efficiency of DNS relies not only on
the assumption that mappings hardly change. It also
relies on the implicit assumption that the owner of
a named object is in the vicinity of the name server
that stores the object’s address. This assumption is
generally correct for Internet hosts, and allows for an
efficient and scalable distribution of the name space
implementation. Under this assumption, an update
operation—which is carried out by the owner of an
object—is then a local operation.

The assumption that a name can be stored in one
fixed location is wrong when talking about general-
purpose middleware systems. The assumption is par-
ticularly wrong when considering long-lived objects.
When an object moves a great distance because its
owner moves, it will be useful if the name would “fol-
low” the object and user in the sense that resolving
that name would still exhibit locality. For example,
when a user moves from Amsterdam to New York,
its home directory should be moved to New York as
well. The same reasoning about locality applies to
replicated objects. An object’s name should be stored
near every replica of the object to provide local name
resolution. For example, if a web-site has replicas in
London and Tokyo, the directory that names the pages
in the web-site should have replicas in London and
Tokyo as well, allowing names to be resolved locally.

The problem we are thus faced with is to invent a
naming service that can continue to support locality
in name resolution in the presence of object mobility
and replication.

3 Naming Model

The goal of our global middleware system is to sup-
port 10'2 objects, distributed worldwide. Our naming
system therefore has to deal with a large number of

names as well as large geographical distances. The
objects themselves have two important characteristics
that also influence the design of the naming service:
(1) objects might be replicated; (2) objects are not
statically bound to a single location. Even though
(most of) the problems created by these characteristics
are solved through location-independent object iden-
tifiers and the use of a location service (as discussed
in Section 2.1), the previous section clearly shows this
is not enough. A naming service has to be designed
with these characteristics in mind.

The goal of our naming service is to bind symbolic
names to persistent location-independent object iden-
tifiers. In our model, an object identifier will subse-
quently be further resolved to a contact address by
means of a location service. As we discuss later, in
our model, the location service is also used for the im-
plementation of the naming service. However, since
the location service deals with name changes due to
mobility and replication, we can safely assume that
name-to-object identifier mappings are relatively sta-
ble.

The structure of our name space is a directed graph
with labeled arcs. The structure is based on the di-
rectory concept, as found in the UNIX file system and
the Prospero naming system [7]. Interior nodes of the
graph represent directories, whereas leaf nodes repre-
sent user objects such as files. A directory is basically
a table of references, or more specifically, object iden-
tifiers. Each reference points to another directory or a
user object, of which a contact address can be looked
up by means of our location service. Each reference in
a directory is indexed by a simple name (i.e., a label).

A name in the name space is a sequence of labels.
The labels indicate a path through the naming graph.
Name resolution thus consists of step-wise traversing
the graph, each step resulting in a reference. Name
resolution starts at a predefined starting directory. At
this directory, the head label of the sequence is used
to look-up the reference to the next directory. Res-
olution recursively continues with the rest of the se-
quence. The last label of the sequence finally maps to
a reference to the object requested by the client.

We do not give a complete description of our name
space model in this paper, but define only those parts
needed for understanding our naming architecture.
For instance, an important aspect left unspecified is
closure, i.e. how to choose the starting directory
needed to resolve a name. Other important aspects
left out deal with the question whether to restrict the
naming graph to a tree, or more mundane questions
regarding character sets.

4 Implementation Architecture

The naming architecture presented in this section
may look similar to architectures presented in previ-
ous work. It differs, however, significantly in that it
provides a loose coupling between directories and the
servers that store them. A loose coupling allows the
naming system to move directories to servers where
they can provide the best performance. Previous ar-
chitectures, such as DNS, have always used a strong
coupling between directories and name servers, tying
a directory to a fixed location. A second important
distinction with previous work, is that our architec-
ture allows every directory to have its own replication
strategy (tailor made, if necessary). In the following
discussion, we ignore security aspects for the sake of
brevity.

4.1 Directories

Directories are implemented using Globe’s Dis-
tributed Shared Object (DSO) paradigm, as described
in [17]. In this paradigm, a set of replicas work to-
gether to provide the notion of one conceptual (dis-
tributed) object (see Figure 3). The DSO is identified
by an object identifier. Replicas provide the contact
points needed to contact the DSO. To allow a replica
to be run anywhere, its implementation is completely
self-contained, that is, a replica contains all the code
that controls its behavior.

Distributed Shared

Al t A2

Network
A3 (A5 Ad
| f
Replica Address
Space

Figure 1: A distributed shared object in a network

To invoke operations on a directory, a client must
first bind to that directory. An important part of the

binding process is finding a nearby replica. Here we
use our location service. Remember that our location
service exploits locality by starting its search in the
proximity of the client. Consequently, in our naming
approach, when a client wants to bind to a directory,
the location service returns the address of the nearest
contact point, that is, the address of the replica that is
closest to the client. The client then uses this contact
point to contact the directory.

The binding process finishes with the creation of
a proxy for the directory in the client’s address space.
This proxy implements the same interface as the direc-
tory, allowing the client to remotely invoke operations
on the directory.

4.2 Directory Replicas

As with any other Globe object, a directory replica
is implemented by means of four local subobjects, as
shown in Figure 2. The semantics subobject is a
local subobject that implements the actual function-
ality of the directory and contains its current state.
It contains a table storing the mapping between la-
bels and object identifiers. The semantics subobject
contains no code that is related to how its content is
distributed across a network.

Interface to
-~ replicaas
1
awhole

Interface to
| .

semantics

subobject

Figure 2: Internal structure of a directory replica

The state of the directory DSO is made up of the
state of the semantics subobjects of its replicas. Se-
mantics subobjects may be replicated for reasons of
fault tolerance or performance. It is the replication
subobject that is responsible for keeping these repli-
cas consistent according to some (directory-specific)

coherence strategy. A key observation is that differ-
ent directory DSOs may have different replication sub-
objects, implementing different replication algorithms.
Having the replication algorithm encapsulated in a
subobject (with standardized interfaces) allows to eas-
ily change the replication algorithm, when needed.
The communication subobject is a system-
provided subobject that offers a standard interface
to the underlying network, somewhat comparable to
sockets and their implementation. However, this sub-
object can provide more functionality if needed, such
as reliable multi-casting, or reliable datagram services.
The control subobject, finally, takes care of invo-
cations from client processes, and controls the interac-
tion between the semantics subobject and the replica-
tion subobject. The interfaces of the replication sub-
object are standard and independent of those of the
semantics subobject. Consequently, the control sub-
object is needed to bridge the gap between the user-
defined interfaces of the semantics subobject, and the
standard interfaces of the replication subobject.

4.3 Directory Operations

Every directory provides two standard directory in-
terfaces: the look-up interface and the update inter-
face. The look-up interface allows clients to query the
directory. Its main method is the resolve method
that resolves a given name to an object identifier. The
resolve method traverses the naming graph to find
the object identifier of the named object. The traver-
sal can be implemented in two ways, using a recursive
or an iterative approach, but hybrid approaches are
also possible.

In the recursive fashion, a client binds to the start-
ing directory to invoke the resolve method to resolve
the complete name. The starting directory performs
the name resolution by retrieving the object identi-
fier of the first label and binding to the directory it
designates. Using this new binding the starting direc-
tory (recursively) invokes the resolve method with
the rest of the name. The recursion stops when a di-
rectory is requested to recursively resolve a single label
(the last one). The directory can simply return the la-
bel’s object identifier, since it is the object identifier
we are looking for.

Unfortunately, recursive name resolution is also rel-
atively expensive, since it requires the directory to
make and keep track of bindings to other directories.
The resources used to manage these bindings might be
better used to store more directories and handle more
(iterative) name resolution requests. For this reason
directories are allowed to refuse recursive name resolu-

tion and support only iterative name resolution. DNS
top-level servers typically refuse to recursively resolve
names for the same reason.

In the iterative fashion, a client also starts by bind-
ing to the starting directory, but in this case invokes
the resolve method with the first label of the name
only. This invocation results in an object identifier.
The client then releases its binding to the starting di-
rectory, and binds to the directory designated by the
object identifier. This new binding allows the client to
resolve the second label of the name. The client binds
to a new directory for every label of the name. The
object identifier resulting from the method invocation
with the last label of the name is object identifier we
are looking for.

The update interface consist of two methods:
insert and delete. The insert operation allows
a client to insert a pair consisting of a label and an
object identifier into a directory. The remove oper-
ation deletes a (label,identifier)-pair from a di-
rectory given the label. The replica(’s) at which the
insert or delete is actually performed during an in-
vocation is determined by the replication subobjects of
the directory. These replication subobjects also deter-
mine how state changes are subsequently propagated
between replicas.

4.4 Name Servers

To run directory replicas, we introduce a set of
generic name servers. These name servers place the
aforementioned four subobjects in their address spaces
and allow them to run. Name servers provide direc-
tory replicas with the necessary resources and support.
They provide, for instance, the necessary means for a
replica to communicate with other replicas, and offer
an interface to the Globe location service. In addi-
tion, a name server can provide fault-tolerant persis-
tent storage (if needed).

The name servers are distributed across the network
in such a way that every client always has one or more
servers located nearby. As an example, Figure 3 shows
seven name servers 1-7, with three directories, a, b,
and /. Directory a has replicas at name server 5, 6,
and 7. Directory b is replicated at 2 and 4. Directory
/ consists of a single replica at name server 1.

Layered around the grid of name servers are nam-
ing service resolvers, implementing the interface to
the naming service as a whole. Resolvers are responsi-
ble for implementing iterative name resolution, when
directories refuse recursive resolution. Placing this re-
sponsibility at the resolvers makes implementing name
server clients easier. Figure 3 shows three resolvers.

Directory replicas

resolver 1
Name servers

Name service
resolvers

resolver 2

@ replicas of directory /
@ replicas of directory a

O replicas of directory b

Figure 3: The name server grid.

Resolver 1 and 3 are each using one directory (a and
b, respectively), while resolver 2 is using both directo-
ries.

5 Scalability of our Approach

In this section we focus on how the various aspects
of our naming architecture enhance scalability.

5.1 Efficient Look-up Operations

The desire to make name resolution exploit locality
has played an important part in the design of our name
service architecture. Using locality where possible is
the primary means to make name resolution scalable.
The architecture preserves the locality of look-up op-
erations by using the location service when binding to
directories. By using the location service, traversing
the name space always involves contacting nearby di-
rectory replicas. In particular, if a directory is needed
to resolve part of a full name, and that directory has
a replica located in the neighborhood, precisely that
replica will be used.

Consequently, regardless of whether name resolu-
tion is done iteratively or recursively, our approach
ensures that each next step of the resolution process is
carried out at a name server that is as close as possible
to the server where the current step had been carried
out. Optimally, the next step is carried out the same

server as the current one. In contrast, DNS can en-
sure locality only through caching. Without caching,
resolution always proceeds toward the location of the
named object.

To make our point clear, first consider the situa-
tion where resolver 3 wants to recursively resolve the
name /a/b/c in Figure 3. Resolver 3 will start by
binding to the only replica of directory / located at
name server 1. Resolver 3 will then use the binding
to invoke the resolve method, with a/b/c as param-
eter. To resolve the name, the replica of / at 1 uses
the first label a to retrieve the object identifier of di-
rectory a. Using the object identifier it will then bind
to directory a.

The location service ensures that the replica of /
at 1 binds to nearest replica of directory a, namely the
one located at name server 6. The replica of / will then
invoke the resolve method with b/c as parameter.
The replica of directory a will be bound to the nearest
replica of directory b to resolve the last label c. The
nearest replica of b is located at name server 2. One
can see that the name servers used in this example are
all located near each other.

Now consider the situation that recursion is itera-
tive. In that case, it can be seen that resolver 3 will
first bind to the replica of / at server 1. It will then
bind to a replica of directory a that is nearest to itself,
which is the replica at 7, to finally bind to the replica
of directory b at server 2.

5.2 New Replicas

To have local name resolution requires that there
are directory replicas located at name servers nearby.
The naming service architecture allows us to easily cre-
ate new directory replicas nearby, by providing a loose
coupling between directories and the name servers. If
a directory becomes popular in an area where it has no
replica, a new replica can be created at a name server
in that area. This new replica can then provide local
access. Name resolver provide the perfect place to rec-
ognize popular directories. Fach of them can thus take
the appropriate actions to create a new local replicas,
when needed.

When two directories are logically closely related,
the creation of a new replica for one directory, might
result in the creation of a new replica for the other
directory as well. Consider, for instance, the following
situation in Figure 3. Assume that directory a be-
comes popular around name server 3. Since there is
currently no replica of a at 3, the name service creates
one at 3. Furthermore, assume that the only way to
access directory a is via the / directory, which is cur-

rently located only at name server 1. In that case, it
makes sense to create a replica of directory / at 3, as
well. It is clear that the name service needs to obtain
and maintain information about these kind of rela-
tions, if it wants to exploit locality for scalable name
resolution.

5.3 Efficient Update Operations

While adding replicas increases locality, it comes at
the price of an increase in resources. We can limit
the resource usage by choosing an efficient replication
strategy for the directory at hand. A replication strat-
egy is efficient if it provides the desired combination
of consistency and resource usage. The actual combi-
nation is determined by the type of directory.

Consider, for example, a personal home directory.
Such a directory will often contain only a few entries,
and there will be relatively few clients. In this case,
it might be easiest to use master-slave replication,
where the complete directory state is shipped from
the master replica (probably near the owner) to slave
replicas. However, when considering a “root” direc-
tory, like the .com domain in DNS; a different picture
emerges. Such a directory will contain many entries,
and will be accessed by a vast number of clients world-
wide. In this case, a form of active replication might
be useful. With active replication, instead of shipping
state, only the update operations on the directory are
forwarded to all replicas. In our example, immediate
propagation of updates may not be necessary. Instead,
updates may be batched and periodically multicast to
all replicas.

The fact that a replica’s implementation is self-
contained allows us to use new replication methods
when they come available. By allowing efficient up-
date operations, directory-specific replication strate-
gies enhance the scalability of our naming service.

5.4 Caching

To avoid traversal through the name servers, the
name service can cache both intermediate and final
results (directory and user-object identifiers, respec-
tively). The architecture provides two places where
results can be cached: in directories and in the re-
solver.

If the resolve method is executed recursively, the
name service resolver and directories in the path tra-
versed during name resolution, have the possibility
to cache the object identifier of the resolved name.
If extra information is returned after name resolu-
tion, as in DNS, intermediate results could also be
cached. It is thus seen that recursion naturally leads

to the most convenient places to cache results. Un-
fortunately, recursion is relatively expensive and di-
rectories can choose not to provide it, as explained in
Section 4.3.

If the resolve method is implemented iteratively,
the name service resolver becomes the only place to
cache intermediate and final results. By combining in-
termediate results, name resolver can effectively build
short-cuts in the naming graph. Unfortunately, these
short-cuts will be used only by clients of the same re-
solver.

6 Related Work

There is already a considerable body of experience
with large-scale naming systems. The Internet Do-
main Name System (DNS) is perhaps the best-known
example [1, 6]. We described the DNS naming and res-
olution model in Section 2, and have already argued
that DNS cannot be used as a general-purpose naming
system for global middleware. Also note that DNS is
used to name 56 x 10% hosts in July 1999.! which is
significantly less than the 10'2 objects we intend to
support. We doubt that DNS can scale to very large
numbers of hosts.

The Prospero file system supports a naming model
similar to ours [7]. However, the focus of the Prospero
system is completely different. The goal of Prospero
is to examine how scale affects users, specifically how
scale affects the usability of a large system. To en-
hance usability, Prospero allows users to build their
own personal virtual system by customizing their view
of the name space. The customization uses, what are
called, filters and union links. Since these methods are
based on directories, the Prospero naming model can
thus be seen, and possibly implemented, as an exten-
sion of our naming model. Prospero uses forwarding
pointers to deal with directories that changed location.
Forwarding pointers scale poorly, as demonstrated, for
example, in the Web.

Lampson has designed a global name service with
a focus on scalability, high availability, and contin-
uing evolution [4]. The name service uses a tree-
shaped name space like DNS, but distinguishes at the
implementation level between local and global direc-
tories. The global directories guide name resolution
from the root directory down to local directories. The
global directories are replicated and maintain consis-
tency through the use of a sweep operation that prop-
agates state changes between replicas. The local di-

1Source: Internet Software Consortium

(http:/ /www.isc.org/)

rectories allow further name resolution to retrieve the
values we are interested in. The use of locality (outside
caching) or mobility of directories is not considered.

The CORBA naming specifications provide a high-
level description of the CORBA naming model [8].
This model is compatible with the naming model we
use. In the CORBA model, directories are distributed
objects and name resolution means traversing a graph
of directory objects. A scalable implementation of the
specification will depend heavily on the scalability of
the underling object request broker (ORB). We are
not aware of an implementation having the same scal-
ability capabilities as our approach.

Our approach to naming and locating objects has
strong links to the development and deployment of
Uniform Resource Names (URNs) [5, 14]. A URN
is a location-independent naming scheme, in which
names are to be resolved into URLs. However, dis-
cussions concerning the way that URNs should be im-
plemented, and in particular how they should be re-
solved, hardly address the scalability concerns we have
presented in this paper. In fact, proposals actually
ignore the issue by concentrating only on how appro-
priate resolvers should be identified [3, 15]. We claim
that our approach will provide a unique and scalable
solution to implementing URNSs.

7 Conclusion and Future Work

Global middleware requires the implementation of
a scalable naming service. For a naming service to
scale, it needs to take the use of locality and directory-
specific replication strategies into account. We have
designed a naming architecture that makes use of these
two design principles, and shown how they enhance its
scalability.

Our future work consists of extending the naming
model described in this paper to be complete, and
using the specification to implement a naming ser-
vice. We are currently laying the ground work for the
name server implementation. A location service pro-
totype is already implemented. Using the specification
we can implement the directory semantics subobjects,
and start experimenting with different replication sub-
objects.

References
[1] P. Albitz and C. Liu. DNS and BIND. O’Reilly
& Associates, Sebastopol, CA., 3rd edition, 1998.
[2] A. Black and Y. Artsy. “Implementing Loca-
tion Independent Invocation.” IEEE Trans. Par.
Distr. Syst., vol. 1, nr. 1, pp. 107-119, Jan. 1990.

[3] R. Daniel and M. Mealling. “Resolution of Uni-
form Resource Identifiers using the Domain Name
System.” RFC 2168, June 1997.

[4] B. Lampson. “Designing a Global Name Ser-
vice.” In Proc. Fourth Symp. on Principles of Dis-
tributed Computing, pp- 1-10, Minaki, Ontario,
1986. ACM.

[5] R. Moats. “URN Syntax.” RFC 2141, May 1997.

[6] P. Mockapetris. “Domain Names - Concepts and
Facilities.” RFC 1034, Nov. 1987.

[7] B. C. Neuman. “The Prospero File System: A
Global File System Based on the Virtual System.”
Computing Systems, vol. 5, nr. 4, pp. 407-432,
1992.

[8] Object Management Group. “CORBAservices:
Common Object Services Specification.” OMG
Document 98-12-09, OMG, Dec. 1998.

[9] ObjectSpace Inc. Voyager 2.0 User Guide, 1998.

[10] OMG. “The Common Object Request Bro-
ker: Architecture and Specification, revision 2.2.”
OMG Document 98-07-01, Object Management
Group, Feb. 1998.

[11] S. Radicati. X.500 Directory Services: Tech-
nology and Deployment. International Thomson
Computer Press, London, 1994.

[12] W. Rosenberry, D. Kenney, and G. Fisher. Un-
derstanding DCE. O’Reilly & Associates, Se-
bastopol, CA., 1992.

[13] M. Shapiro, P. Dickman, and D. Plainfossé. “SSP
Chains: Robust, Distributed References Support-
ing Acyclic Garbage Collection.” Technical Re-
port 1799, INRIA, Rocquencourt, France, Nov.
1992.

[14] K. Sollins and L. Masinter. “Functional Require-
ments for Uniform Resource Names.” RFC 1737,
Dec. 1994.

[15] K. Sollins. “Architectural Principles of Uniform
Resource Name Resolution.” RFC 2276, Jan.
1998.

[16] M. van Steen, F. Hauck, P. Homburg, and
A. S. Tanenbaum. “Locating Objects in Wide-
Area Systems.” IEEE Commun. Mag., vol. 36,
nr. 1, pp. 104-109, Jan. 1998.

[17] M. van Steen, P. Homburg, and A. S. Tanen-
baum. “Globe: A Wide-Area Distributed Sys-
tem.” IEEE Concurrency, vol. 7, nr. 1, pp. 70-78,
Jan. 1999.

[18] M. van Steen, F. J. Hauck, G. Ballintijn, and
A. S. Tanenbaum. “Algorithmic Design of the
Globe Wide-Area Location Service.” The Com-
puter Journal, vol. 41, nr. 5, pp. 297-310, 1998.

