
The Distributed ASCI Supercomputer Project

Henri Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Thilo Kielmann, Jason Maassen,

Rob van Nieuwpoort, John Romein, Luc Renambot, Tim R�uhl, Ronald Veldema, Kees Verstoep,

Aline Baggio, Gerco Ballintijn, Ihor Kuz, Guillaume Pierre, Maarten van Steen, Andy Tanenbaum,

Gerben Doornbos, Desmond Germans, Hans Spoelder, Evert-Jan Baerends, Stan van Gisbergen

Faculty of Sciences, Vrije Universiteit

Hamideh Afsermanesh, Dick van Albada, Adam Belloum, David Dubbeldam, Zeger Hendrikse,

Bob Hertzberger, Alfons Hoekstra, Kamil Iskra, Drona Kandhai, Dennis Koelma,

Frank van der Linden, Benno Overeinder, Peter Sloot, Piero Spinnato

Department of Computer Science, University of Amsterdam

Dick Epema, Arjan van Gemund, Pieter Jonker, Andrei Radulescu, Cees van Reeuwijk, Henk Sips

Delft University of Technology

Peter Knijnenburg, Michael Lew, Floris Sluiter, Lex Wolters

Leiden Institute of Advanced Computer Science, Leiden University

Hans Blom, Cees de Laat, Aad van der Steen

Faculty of Physics and Astronomy, Utrecht University

Abstract

The Distributed ASCI Supercomputer (DAS) is a homogeneous wide-area distributed system consist-

ing of four cluster computers at di�erent locations. DAS has been used for research on communication

software, parallel languages and programming systems, schedulers, parallel applications, and distributed

applications. The paper gives a preview of the most interesting research results obtained so far in the

DAS project.1

1More information about the DAS project can be found on http://www.cs.vu.nl/das/

1



1 Introduction

The Distributed ASCI Supercomputer (DAS) is an experimental testbed for research on wide-area distributed

and parallel applications. The system was built for the Advanced School for Computing and Imaging (ASCI)2,

a Dutch research school in which several universities participate. The goal of DAS is to provide a common

computational infrastructure for researchers within ASCI, who work on various aspects of parallel and

distributed systems, including communication substrates, programming environments, and applications. Like

a metacomputer [41] or computational grid [17], DAS is a physically distributed system that appears to its

users as a single, coherent system. Unlike metacomputers, we designed DAS as a homogeneous system.

The DAS system consists of four cluster computers, located at four di�erent universities in ASCI, linked

together through wide area networks (see Figure 1). All four clusters use the same processors and local

network and run the same operating system. Each university has fast access to its own local cluster. In

addition, a single application can use the entire wide-area system, for example for remote collaboration

or distributed supercomputing. DAS can be seen as a prototype computational grid, but its homogeneous

structure makes it easier to avoid the engineering problems of heterogeneous systems. (Heterogeneous systems

are the object of study in several other projects, most noticeably Legion [18] and Globus [16]). DAS can

also be seen as a cluster computer, except that it is physically distributed.

This paper gives a preview of some research results obtained in the DAS project since its start in June

1997. We �rst describe the DAS architecture in more detail (Section 2) and then we discuss how DAS is used

for research on systems software (Section 3) and applications (Section 4). Finally, in Section 5 we present

our conclusions.

2 The DAS system

DAS was designed as a physically distributed homogeneous cluster computer. We decided to use cluster

technology because of the excellent price/performance ratio of commodity (o�-the-shelf) hardware. We

wanted the system to be distributed, to give the participating universities fast access to some local resources.

One of the most important design decisions was to keep the DAS system homogeneous. The reasons for

this choice were to allow easy exchange of software and to stimulate cooperation between ASCI researchers.

Both the hardware and the software of DAS are homogeneous: each node has the same processor and runs

the same operating system. Also, the local area network within all clusters is the same. The only variations

in the system are the amount of local memory and network interface memory (SRAM) in each node and the

2The ASCI research school is unrelated to, and came into existence before, the Accelerated Strategic Computing Initiative.

2



VU Amsterdam UvA Amsterdam

LeidenDelft

24 24

24128

6 Mbit/s
ATM

Figure 1: The wide-area DAS system.

number of nodes in each cluster. Three clusters have 24 nodes; the cluster at the VU initially contained 64

nodes, but was expanded to 128 nodes in May 1998.

We selected the 200 MHz Pentium Pro as processor for the DAS nodes, at the time of purchase the

fastest Intel CPU available. The choice for the local network was based on research on an earlier cluster

computer, comparing the performance of parallel applications on Fast Ethernet, ATM, and Myrinet [29].

Myrinet was selected as local network, because it was by far the fastest of the networks considered. Myrinet

is a switch-based network using wormhole routing. Each machine contains an interface card with the LANai

4.1 programmable network interface processor. The interface cards are connected through switches. The

Myrinet switches are connected in a ring topology for the 24-node clusters and in a 4 by 8 torus for the

128-node cluster. Myrinet is used as fast user-level interconnect. The nodes in each cluster are also connected

by a partially switched Fast Ethernet, which is used for operating system traÆc.

Since DAS is homogeneous, it runs a single operating system. We initially chose BSD/OS (from BSDI)

as OS, because it is a stable system with commercial support. The increasing popularity of Linux both

worldwide and within the ASCI school made us switch to Linux (RedHat 5.2) in early 1999.

The clusters were assembled by Parsytec. Figure 2 shows the 128-node cluster of the Vrije Universiteit.

Each node is a compact module rather than a desktop PC or minitower, but it contains a standard PC

motherboard. The clusters were delivered in June 1997.

The clusters are connected by wide-area networks in two di�erent ways:

� using the National Research Network infrastructure (best e�ort network) and the LANs of the univer-

sities

� using an ATM based Virtual Private Network (Quality of Service network)

3



Figure 2: The 128-node DAS cluster at the Vrije Universiteit.

This setup allowed us to compare a dedicated �xed Quality of Service network with a best e�ort network.

The best e�ort network consists generally of 100 Mbit/s Ethernet connections to a local infrastructure; each

university typically had a 34 Mbit/s connection to the Dutch backbone, later increased to 155 Mbit/s. The

ATM connections are all 6 Mbit/s constant bitrate permanent virtual circuits. The round trip times on

the ATM connections have hardly any variation and typically are around 4 ms. On the best e�ort network

the traÆc always has to pass about 4 routers, which cause a millisecond delay each. Measurements show

that the round trip times vary by about an order of magnitude due to the other internet traÆc. Attainable

throughput on the ATM network is also constant. On the best e�ort network, the potential throughput is

much higher, but during daytime congestion typically gives throughputs of about 1-2 Mbit/s. This problem

improved later during the project.

For most research projects, we thus use the dedicated 6 Mbit ATM links. The clusters are connected by

these links using a fully-connected graph topology, so there is a link between every pair of clusters.

3 Research on systems software

DAS is used for various research projects on systems software, including low-level communication protocols,

languages, and schedulers.

3.1 Low-level communication software

High-speed networks like Myrinet can obtain communication speeds close to those of supercomputers, but

realizing this potential is a challenging problem. There are many intricate design issues for low-level network

4



interface (NI) protocols [8]. We have designed and implemented a network interface protocol for Myrinet,

called LFC [9, 10]. LFC is both eÆcient and provides the right functionality for higher-level programming

systems. The LFC software runs partly on the host and partly on the embedded LANai processor of the

Myrinet network interface card. An interesting feature of LFC is its spanning tree broadcast protocol, which

is implemented on the NIs. By forwarding broadcast messages on the NI rather than on the host, fewer

interactions are needed between the NI and the host, thus speeding up broadcasts substantially.

We have also developed a higher-level communication library, called Panda [5], which supports asyn-

chronous point-to-point communication, remote procedure calls, totally-ordered broadcast, and multithread-

ing. On Myrinet, Panda is implemented on top of LFC. The LFC and Panda libraries have been used for a

variety of programming systems, including MPI, PVM, Java, Orca, Jackal, and CRL.

3.2 Languages and programming systems

Various languages and libraries have been studied using DAS. Part of this work focuses on local clusters,

but several programming environments also have been implemented on the entire wide-area DAS system.

Manta is an implementation of Java designed for high-performance computing. Manta uses a static

(native) compiler rather than an interpreter or JIT (just-in-time compiler), to allow more aggressive op-

timizations. Manta's implementation of Remote Method Invocation (RMI) is far more eÆcient than that

in other Java systems. On Myrinet, Manta obtains a null-latency for RMIs of 37 �sec, while the JDK 1.1

obtains a latency of more than 1200 �sec [31]. This dramatic performance improvement was obtained by

generating specialized serialization routines during compile-time, by reimplementing the RMI protocol it-

self, and by using LFC and Panda instead of TCP/IP. Manta uses its own RMI protocol, but also has the

functionality to interoperate with other Java Virtual Machines. To handle polymorphic RMIs [53], Manta is

able to accept a Java class �le (bytecode) from a JVM, compile it dynamically to a binary format, and link

the result into the running application program.

We have also developed a �ne-grained Distributed Shared Memory system for Java, called Jackal [52].

Jackal allows multithreaded (shared-memory) Java programs to be run on distributed-memory systems,

such as a DAS cluster. It implements a software cache-coherence protocol that manages regions. A region

is a contiguous block of memory that contains either a single object or a �xed-size partition of an array.

Jackal caches regions and invalidates the cached copies at synchronization points (the start and end of a

synchronized statement in Java). Jackal uses local and global mark-and-sweep garbage collection algorithms

that are able to deal with replicated objects and partitioned arrays. Jackal has been implemented on DAS

on top of LFC.

5



Spar/Java is a data and task parallel programming language for semi-automatic parallel programming, in

particular for the programming of array-based applications [47]. Apart from a few minor modi�cations, the

language is a superset of Java. This provides Spar/Java with a modern, solid language as basis, and makes

it accessible to a large group of users. Spar/Java extends Java with constructs for parallel programming,

extensive support for array manipulation, and a number of other powerful language features. It has a exible

annotation language for specifying data and task mappings at any level of detail [46]. Alternatively, compile-

time or run-time schedulers can do (part of) the scheduling. Spar/Java runs on the DAS using MPI and

Panda.

Orca is an object-based distributed shared memory system. Its runtime system dynamically replicates

and migrates shared objects, using heuristic information from the compiler. Orca has been implemented

on top of Panda and LFC. An extensive performance analysis of Orca was performed on DAS, including a

comparison with the TreadMarks page-based DSM and the CRL region-based DSM [5]. Also, a data-parallel

extension to Orca has been designed and implemented, resulting in a language with mixed task and data

parallelism. This extended language and its performance on DAS are described in [20].

In the ESPRIT project PREPARE, an HPF compiler has been developed with an advanced and eÆcient

parallelization engine for regular array assignments [14, 39]. The PREPARE HPF compiler has been ported

to the DAS and uses the CoSy compilation framework in combination with the MPI message passing library.

In another ESPRIT project, called Dynamite3, we have developed an environment for the dynamic

migration of tasks in a PVM program [21, 22, 44]. A version of this code is now available for SUN OS

5.5.1, SUN OS 5.6 and Linux/i386 2.0 and 2.2 (libc5 and glibc 2.0). DAS is being used for developing

and testing the Linux version of this code. The aim of this work is to develop an environment for Linux,

supporting dynamical task migration for PVM and MPI, and to make this environment available to the

research community. Dynamite is minimally intrusive in the sense that it does not require modi�cations in

the user's program and is implemented entirely in user space and thus does not require modi�cations to the

kernel. The Dynamite system includes: a modi�ed version of the Linux ELF dynamic loader, which does

checkpointing and restarting of tasks; a modi�ed version of PVM, supporting the transparent migration

of tasks; monitoring programs for the system load and the PVM system; a dynamic task scheduler; and

optionally, a GUI can be added that guides the user through the necessary steps to set up the environment

and to start up a program.

Several programming systems have also been implemented on multiple clusters of the wide-area DAS

system. Both Orca and Manta have been implemented on wide-area DAS and have been used to study the

3See http://www.hoise.com/dynamite

6



performance of wide-area parallel applications [35, 45]. In addition, we have developed a new MPI (Message

Passing Interface) library for wide-area systems, called MagPIe [27]. MagPIe optimizes MPI's collective

communication operations and takes the hierarchical structure of wide-area systems into account. With

MagPIe, most collective operations require only a single wide-area latency. For example, an MPI broadcast

message is performed by sending it in parallel over the di�erent wide-area links and then forwarding it

within each cluster. Existing MPI implementations that are not aware of the wide-area structure often

forward a message over multiple wide-area links (thus taking multiple wide-area latencies) or even send the

same information multiple times over the same wide-area link. On DAS, MagPIe outperforms MPICH by a

factor of 2-8.

3.3 Schedulers

Another topic we are investigating with the DAS is the scheduling of parallel programs across multiple DAS

clusters. Our current DAS scheduler (prun) only operates on single clusters, so for multi-cluster scheduling

we need a mechanism for co-allocation of processors in di�erent clusters at the same time. We are currently

investigating the use of Globus with its support for co-allocation [13] for this purpose. So far, we have

implemented a simple interface between Globus and prun, and we have been able to submit and run two-

cluster jobs through Globus. An important feature of prun that facilitates co-allocation is its support for

reservations. We are planning to enhance the interface between the local schedulers and Globus, and if

necessary the co-allocation component of Globus, so that more optimal global scheduling decisions can be

made. Our �rst results on the performance of co-allocation in DAS-like systems can be found in [11].

4 Research on applications

We have used the DAS system for applications that run on a single cluster (Section 4.1) and for wide-

area applications (Section 4.2). Also, we have studied Web-based applications (Section 4.3) and worldwide

distributed applications (Section 4.4).

4.1 Parallel applications

DAS has been used for a large number of parallel applications, including discrete event simulation [33, 40],

Lattice Gas - and Lattice Boltzmann Simulations [15, 24, 25], parallel imaging [28], image searching [12],

datamining, N-body simulation [42], game tree search [38], simulation of branch-prediction mechanisms, ray

7



tracing, molecular dynamics, and quantum chemistry [19]. We discuss some of these applications in more

detail below.

The PILE project is to design a parallel programming model and environment for time-constraint image

processing applications [28]. The programming model is based on the analysis of typical solutions employed

by users from the image processing community. The PILE system is built around a software library containing

a set of abstract data types and associated operations executing in a data parallel fashion. As implementation

vehicles on the DAS, MPI, CRL, and Spar/Java are being investigated.

Another application area is image databases. Visual concept recognition [12] algorithms typically require

the solution of computationally intensive sub-problems such as correlation and the optimal linear principal

component transforms. We have designed eÆcient algorithms for distributing the recognition problem across

high bandwidth, distributed computing networks. This has led not only to new algorithms for parallelizing

prevalent principal component transforms, but also to novel techniques for segmenting images and video for

real time applications.

Another project investigates hardware usage for branch predictors. Branch predictors are used in most

processors to keep the instruction pipeline �lled. As a �rst step, we want to investigate the e�ects of many

di�erent (avors of) algorithms. For this purpose, a database was built which currently holds about 8000

SQL-searchable records. Each record contains a detailed description of the state of a branch predictor after

the run of a trace. These traces were created on the DAS machine using a MIPS-simulator, which simulates

six di�erent Spec95 benchmarks. The database was also built on the DAS machine, which took about 20

hours using 24 nodes. The individual nodes were used as stand-alone computers. Each node ran a copy of a

branch-predictor simulator and worked on its own data-set. The main advantage of using the DAS machine

for this project is that it provides a transparent multi-computer platform, which has proven to build the

required database in a fraction of the time needed by a single computer. With the resulting database the

investigation of the next steps in this project has been started.

We also use DAS for experimental research on the Time Warp Discrete Event Simulation method. The

availability of fast, low-latency communication is an important asset here. We have made extensive use of the

DAS to run Time Warp simulations for studying the inuence of the application dynamics on the execution

behavior of the Time Warp simulation kernel. The application under study is an Ising spin system. The

results clearly show the inuence of the Ising spin dynamics on the Time Warp execution behavior in terms

of rollback length and frequency, and turnaround times. The results indicate the need for adaptive optimism

control mechanisms. Successful experiments showed the versatility of optimism control. First results are

obtained for describing and measuring self organization in parallel asynchronous Cellular Automata with

8



Time Warp optimistic scheduling. It was shown that di�erent scaling laws exist for rollback lengths with

varying Time Warp windows. These results were experimentally validated for stochastic spin dynamics

systems. The work is described in more detail in [40].

Another project studies N-body simulations. The numerical integration of gravitational N-body problems

in its most basic formulation requires O(N2) operations per time step and O(N) time steps to study the

evolution of the system over a dynamically interesting period of time. Realistic system sizes range from

a few thousand (open clusters) through 106 (globular clusters) to 1012 (large galaxies). There are several

options to speed up such calculations: use a parallel computer system; use fast, special purpose, massively

parallel hardware, such as the GRAPE-4 system of Makino [32]; avoid recomputing slowly varying forces too

frequently (i.e. use individual time-steps); or carefully combine groups of particles in computing the forces on

somewhat distant particles (this leads to the well-known hierarchical methods). Each of these techniques has

distinct advantages and drawbacks. In our research we strive to �nd optimal mixes of the above approaches

for various classes of problems. We have attached two GRAPE-4 boards, which were kindly made available

by Jun Makino, to two separate DAS nodes at the University of Amsterdam. The system is used both by the

Astronomy Department for actual N-body simulations, and by the Section Computational Science to model

the behavior of such hybrid computer systems and to guide the development of more advanced approaches

to N-body simulations, combining some or all of the above techniques.

The implementation of a hierarchical algorithm on a parallel computer and the control of the resulting

numerical errors are important components of our research. The methodologies to be developed have a

wider applicability than astrophysical N-body problems alone. Experiments have been performed on two

astronomical N-body codes that have been instrumented to obtain performance data for individual software

components and the GRAPE. One of the codes was adapted to run as a parallel code on the DAS with

GRAPE. A simulation model for the resulting hybrid architecture has been developed that reproduces the

actual performance of the system quite accurately, so we will use this model for performance analysis and

prediction for similar hybrid systems.

We also study particle models with highly constrained dynamics. These Lattice Gas (LGA) - and Lattice

Boltzmann models (LBM) originated as mesoscopic particle models that can mimic hydrodynamics. We use

these models to study uctuations in uids and to study ow and transport in disordered media, such as

random �ber networks and random close packings of spheres. In all cases the computational demands are

huge. Typical LGA runs require 50 hours compute time on 4 to 8 DAS nodes and are compute bounded.

Typical LBM runs simulate ow on very large grids (2563 to 5123) and are usually bounded by the available

memory in the parallel machine. Large production runs are typically executed on 8 to 16 DAS nodes.

9



Our parallel Lattice Boltzmann code was originally developed on a Cray T3E [24, 25] under MPI. Be-

cause of the inherent data locality of the LBM iteration, parallelization was straightforward. However, to

guarantee good load balancing we use Orthogonal Recursive Bisection to obtain a good partitioning of the

computational box. The code was ported to several systems (DAS, Parsytec CC, IBM SP2). Currently, we

investigate ow and transport in random close packings of spheres, using the DAS.

We developed a generic parallel simulation environment for thermal 2-dimensional LGA [15]. The de-

composition of the rectangular computational grid is obtained by a strip wise partitioning. An important

part of the simulation is continuous Fourier transformations of density uctuations after each LGA iteration.

As a parallel FFT we use the very eÆcient public domain package FFTW (http://www.�tw.org/) which

executes without any adaptations on the DAS.

Another project involves parallel ray tracing. The ray tracer we use is based on Radiance and uses

PVM (on top of Panda) for inter-processor communication. The port to DAS was achieved with the aim to

compare performance results on di�erent platforms, including the DAS, a Parsytec CC, and various clusters

of workstations. The algorithm consists of a demand-driven part for those tasks which require either a

large amount of data or data which is diÆcult to predict in advance. This leads to a basic, but unbalanced

workload. In order to achieve proper eÆciencies, demand driven tasks are created where possible. These

include tasks which are relatively compute intensive and require a small amount of data. Demand driven

tasks are then used to balance the workload. An overview of the algorithm, including results, are given

in [36].

In the Multigame project, we have developed an environment for distributed game-tree search. A pro-

grammer describes the legal moves of a game in the Multigame language and the compiler generates a move

generator for that game. The move generator is linked with a runtime system that contains parallel search

engines and heuristics, resulting in a parallel program. Using the Multigame system, we developed a new

search algorithm for single-agent search, called Transposition Driven Search, which obtains nearly perfect

speedups up to 128 DAS nodes [38].

Several interactive applications are being studied that use parallelism to obtain real-time responses, for

example for steering simulations. Examples are simulation of the chaotic behavior of lasers or of the motion

of magnetic vortices in disordered superconductors, real-time analysis of experimental data (e.g., determining

the current patterns in at conductors from magneto-optical imaging [54]), and post-processing experimental

results. Examples of the latter category are reconstruction of 3D images of teeth from local CT-data and

reconstruction of the sea-bottom structure from acoustical data. As many problems use linear-algebraic

operations or Fast Fourier Transforms, excellent speed-ups can be obtained.

10



One of the largest applications ported to DAS is the Amsterdam Density Functional (ADF) program [19]

of the Theoretical Chemistry section of the Vrije Universiteit. ADF is a quantumchemical program. It uses

density functional theory to calculate the electronic structure of molecules, which can be used for studying

various chemical problems. ADF has been implemented on DAS on top of the MPI/Panda/LFC layers. The

obtained speed-up strongly depends on the chosen accuracy parameters, the molecule, and the calculated

property. The best speed-up measured so far was 70 on 90 CPUs for a calculation on 30 water molecules.

Current work focuses on eliminating the remaining sequential bottlenecks and improving the load balancing

scheme.

We have also compared the application performance of the DAS clusters with that of a 4-processor SGI

Origin200 system (at the University of Utrecht). This study mainly uses the EuroBen benchmark, which

indicates performance for technical/scienti�c computations. The single-node observed peak performance of

the Pentium Pro nodes of DAS is 3{5 times lower than that of the Origin200 nodes, mainly because the

O200 nodes are super scalar (they have more independently schedulable oating-point operations per cycle).

We compared the communication performance of DAS and the O200 by running a simple ping-pong test

written in Fortran 77/MPI. The MPI system used for DAS is a port of MPICH on top of Panda and LFC.

The bandwidth within a local DAS cluster is about half of that of the O200. Finally, we measured the

performance of a dense matrix-vector multiplication The DAS version scales well, but for large problem sizes

the program runs out of its L2 cache, resulting in a performance decrease. The maximum speed obtained

on DAS (1228 Mop/s) is a factor of 6 lower than on the O200 (7233 Mop/s).

4.2 Wide-area applications

One of the goals of the DAS project was to do research on distributed supercomputing applications, which

solve very large problems using multiple parallel systems at di�erent geographic locations. Most experiments

in this area done so far (e.g., SETI@home and RSA-155) use very coarse-grained applications. In our work,

we also investigate whether more medium-grained applications can be run eÆciently on a wide-area system.

The problem here, of course, is the relatively poor performance of the wide-area links. On DAS, for example,

most programming systems obtain a null-latency over the local Myrinet network of about 30-40 �sec, whereas

the wide-area ATM latency is several milliseconds. The throughput obtained for Myrinet typically is 30-60

Mbyte/sec and for the DAS ATM network it is about 0.5 Mbyte/sec. So, there is about two orders of

magnitude di�erence in performance between the local and wide-area links.

Many researchers have therefore come to believe that it is impossible to run medium-grained applications

on wide-area systems. Our experience, however, contradicts this expectation. The reason is that it is possible

11



to exploit the hierarchical structure of systems like DAS. Most communication links in DAS are fast Myrinet

links, and only few links are slow ATM links. We have discovered that many parallel algorithms can be

optimized by taking this hierarchical structure into account [6, 35, 45]. The key is to avoid the overhead on

the wide-area links, or to mask wide-area communication. Many applications can be made to run much faster

on the wide-area DAS using well-known optimizations like message combining, hierarchical load balancing,

and latency hiding. The speedups of the optimized programs often is close to those on a single cluster with

the same total number of CPUs.

In addition to this distributed supercomputing type of application, interest is also increasing in using DAS

for other types of computational-grid applications. An important issue is to harness the large computational

and storage capabilities that are provided by such systems. A next step is to develop new types of application

environments on top of these grids. Virtual laboratories are one form of such new application environments.

They will, in the near future, have to allow an experimental scientist (either being a physicist, a biologist or an

engineer) to do experiments or develop designs. A Virtual laboratory environment will consist of equipment

(like a mass spectrometer or a DNA micro array) that can be remotely controlled and that will provide data

sets that can be stored in the information management part of the laboratory. Interaction with the data

can, among others, take place in virtual reality equipment like a CAVE. We have used DAS and another

SMP-based cluster computer (Arches) to develop the distributed information management for such systems

as well as to study the possibilities for more generic user oriented middle ware for such laboratories [23].

In another project (which is part of the Dutch Robocup initiative), we have developed an interactive and

collaborative visualization system for multi-agent systems, in particular robot soccer. Our system allows

human users in CAVEs at di�erent geographic locations to participate in a virtual soccer match [37, 43].

The user in the CAVE can navigate over the soccer �eld and kick a virtual ball. In this way, the user interacts

with a running (parallel) simulation program, which runs either on an SP2 or a DAS cluster. In general,

many other scienti�c applications can bene�t from such a form of high-level steering from a Virtual Reality

environment. The wide-area networks of DAS are an interesting infrastructure for implementing distributed

collaborative applications in general, as the link-latency has hardly any variation.

4.3 Web-based applications

We have studied Web caching using DAS and Arches, focusing mainly on cache replacement and coherence

strategies. This study showed that the techniques currently used for Web caching are nevertheless very simple

and are mostly derived from earlier work in computer architecture systems. The experiments show that these

techniques are still quite eÆcient compared to some new techniques that have been proposed specially for

12



Web caching [1, 2, 3]. Since in Web caching both strong and weak document coherency are considered,

we have performed experiments in which we studied the quality of the hits (good hits are performed on

up-to-date cached documents). We have shown the existence of two categories of replacement strategies,

performing the hits on recently requested documents or (mainly) on long term cached documents. The usage

of the cached documents is quite di�erent in both classes and the cache size has di�erent impact on each

category. We have compared the eÆciency of strong and weak document coherency. The results show that

with weak document coherency, between 10% and 26% of the forwarded documents were out-of-date, while

the useless generated traÆc remains quite high: 40% to 70% of the messages exchanged to check the state

of the cached documents are useless. To study strong coherency, we used a typical method that uses the

invalidation protocol. The results show that the cost paid for this can be quite high. On average 70% of the

invalidation messages are useless and arrive at a cache server after the target document has been removed

from the cache.

In another project, called ARCHIPEL [7], we study information service brokerage systems. In order

to support the wide variety of application requirements, fundamental approaches to electronic commerce,

Web-based clearing houses, distributed databases, and information service brokerage systems need to be

developed. The ARCHIPEL system developed at the University of Amsterdam aims at both addressing and

analyzing these complex needs, and providing the environment and system for their adequate support. The

results achieved at this early stage of the project contain the identi�cation of the challenging requirements for

the ARCHIPEL support infrastructure, such as Web-based, cooperative and interoperable, high performance,

support for node autonomy, preservation of information visibility (and information modi�cation) rights, and

the platform heterogeneity. So far, a comprehensive description of the ARCHIPEL infrastructure is provided

that unites di�erent characteristics of existing parallel, distributed, and federated database management

systems within one uniform architecture model. Currently, di�erent methodologies and technologies are

being evaluated to ful�ll the requirements. From this point of view, among others the XML technology,

ODBC standard, rapidly improving Java based programming and distributed management tools are being

evaluated.

4.4 Worldwide distributed applications

The goal of the Globe project [50, 51] is to design and build a prototype of a scalable infrastructure for future

worldwide distributed applications. The infrastructure is designed to support up to a billion users, spread

over the whole world. These users may own up to a trillion objects, some of them mobile. Many aspects of

the system, such as replicating data over multiple locations and managing security should be automatic or at

13



least easily con�gurable. Although Globe interworks with the World Wide Wide, it is intended to run native

on the Internet, just as email, USENET news, and FTP do. DAS, with its 200 nodes at four locations, has

been used as a testbed to test pieces of the Globe system. We hope that a �rst prototype of Globe will be

available in early 2001.

The software technology underlying Globe is the distributed shared object. Each object has methods

that its users can invoke to obtain services. An object may be replicated on multiple machines around the

world and accessed locally from each one as if it were a local object. The key to scalability is that each

object has its own policies with respect to replication, coherence, communication, security, etc., and these

policies are encapsulated within the object. For example, an object providing �nancial services may require

sequential consistency, whereas an object providing sports scores may have a much weaker consistency. It

is this ability to tailor the various policies per object that makes Globe scalable because those objects with

demanding requirements can have them without a�ecting objects that can live with weaker guarantees.

One of the aspects studied in detail is locating objects (�les, mailboxes, Web pages, etc.) in such a large

system. When an object wishes to be found, it registers with the location server, which tracks the location

of all objects in a worldwide tree [48, 49]. The tree exploits locality, caching, and other techniques to make

it scalable. Recent work has focused on handling mobile objects. Other work has looked at automating the

decision about where to place replicas of objects to minimize bandwidth and delay [34]. The main conclusion

here is that the ability to tailor the replication policy to each object's access patterns provides signi�cant

gains over a single replication policy for all objects and far better than having only a single copy of each

object. We have also looked at security issues [30].

Three applications of Globe have been built. The �rst one, Globedoc [26], is used to produce a better

Web on top of Globe. Globedoc allows one or more HTML pages plus some appropriate collection of icons,

images, etc. to be packaged together into a single Globedoc and transmitted all at once, a vastly more

eÆcient scheme than the current Web. Gateways to and from the Web have been constructed so Globedoc

objects can be viewed with existing browsers. The second application is the Globe Distribution Network [4],

an application to provide a scalable worldwide distribution scheme for complex free software packages. The

third application is an instant-messaging service (called Loc8) built as a front end to the location service.

This service allows users all over the world to contact each other, regardless whether they are mobile or not.

Special attention has been paid to security. In contrast to the centralized approach of existing services, our

Loc8 service is highly distributed and exploits locality as much as possible to attain scalability.

14



5 Conclusions

The Distributed ASCI Supercomputer (DAS) is a 200-node homogeneous wide-area cluster computer that

is used for experimental research within the ASCI research school. Since the start of the project in June

1997, a large number of people have used the system for research on communication substrates, scheduling,

programming languages and environments, and applications.

The cluster computers of DAS use Myrinet as fast user-level interconnect. EÆcient communication

software is the key issue to obtain high communication performance on modern networks like Myrinet.

We designed an eÆcient low-level communication substrate for Myrinet, called LFC. LFC provides the

right functionality to higher level layers (e.g., MPI, PVM, Java RMI, Orca), allowing them to obtain high

communication performance. Most programming systems (even Java RMI) obtain null-latencies of 30-40 �sec

and throughputs of 30-60 Mbyte/sec over Myrinet. We have therefore been able to successfully implement a

wide variety of parallel applications on the DAS clusters, including many types of imaging applications and

scienti�c simulations.

DAS also is an excellent vehicle for doing research on wide-area applications, because it is homogeneous

and uses dedicated wide-area networks. The constant bandwidth and the low round trip times of the

WANs make message passing between the clusters predictable. On heterogeneous computational grids [17],

additional problems must be solved (e.g., due to di�erences in processors and networks). Our work on wide-

area parallel applications on DAS shows that there is a much richer variety of applications than expected that

can bene�t from distributed supercomputing. The basic assumption we rely on is that the distributed system

is structured hierarchically. This assumption fails for systems built from individual workstations at random

locations on the globe, but it does hold for grids built from MPPs, clusters, or networks of workstations.

We expect that future computational grids will indeed be structured in such a hierarchical way, exhibiting

locality like DAS.

Acknowledgements

The DAS system is �nanced partially by the Netherlands Organization for Scienti�c Research (NWO) and

by the board of the Vrije Universiteit. The system was built by Parsytec, Germany. The wide-area ATM

networks are part of the Surfnet infrastructure. A large number of other people have contributed to the

DAS project, including Egon Amade, Arno Bakker, Sanya Ben Hassen, Christopher H�anle, Philip Homburg,

Jim van Keulen, Jussi Leiwo, Aske Plaat, Patrick Verkaik, Ivo van der Wijk (Vrije Universiteit), Gijs

Nelemans, Gert Polletiek, (University of Amsterdam), Wil Denissen, Vincent Korstanje, Frits Kuijlman

15



(Delft University of Technology), and Erik Reinhard (University of Bristol). We thank Jun Makino for

kindly providing us with two GRAPE-4 boards.

References

[1] A.Belloum and B. Hertzberger. Dealing with One-Time Documents in Web Caching. In "EUROMI-

CRO'98 Conference", Sweden, August 1998.

[2] A.Belloum and B. Hertzberger. Replacement Strategies in Web Caching. In "ISIC/CIRA/ISAS'98

IEEE conference", Gaithersburg, Maryland, September 1998.

[3] A.Belloum, A.H.J Peddemors, and B. Hertzberger. JERA: A Scalable Web Server. In "Proceedings of

the PDPTA'98 conference", pages 167{174, Las Vegas, NV, 1998.

[4] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk, M. van Steen, and A.S.

Tanenbaum. The Globe Distribution Network. In Proc. 2000 USENIX Annual Conf. (FREENIX

Track), pages 141{152, June 2000.

[5] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. R�uhl, and F. Kaashoek. Performance

Evaluation of the Orca Shared Object System. ACM Transactions on Computer Systems, 16(1):1{40,

February 1998.

[6] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and R.F.H. Hofman. Optimizing Parallel Applications for

Wide-Area Clusters. In International Parallel Processing Symposium, pages 784{790, Orlando, FL,

April 1998.

[7] A. Belloum, H. Muller, and B. Hertzberger. Scalable Federations of Web Caches. submitted to the

special issue on Web performance of the Journal of Performance Evaluation, 1999.

[8] R.A.F. Bhoedjang, T. R�uhl, and H.E. Bal. Design Issues for User-Level Network Interface Protocols for

Myrinet. IEEE Computer, 31(11):53{60, November 1998.

[9] R.A.F. Bhoedjang, T. R�uhl, and H.E. Bal. EÆcient Multicast on Myrinet Using Link-Level Flow

Control. In Proc. of the 1998 Int. Conf. on Parallel Processing, pages 381{390, Minneapolis, MN,

August 1998.

[10] R.A.F. Bhoedjang, K. Verstoep, T. R�uhl, H.E. Bal, and R.F.H. Hofman. Evaluating Design Alternatives

for Reliable Communication on High-Speed Networks. In Proc. 9th Int. Conference on Architectural

16



Support for Programming Languages and Operating Systems (ASPLOS-9), Cambridge, MA, November

2000.

[11] A.I.D. Bucur and D.H.J. Epema. The Inuence of the Structure and Sizes of Jobs on the Performance of

Co-Allocation. In Sixth Workshop on Job Scheduling Strategies for Parallel Processing (in conjunction

with IPDPS2000), Lecture Notes in Computer Science, Cancun, Mexico, May 2000. Springer-Verlag,

Berlin.

[12] J. Buijs and M. Lew. Learning Visual Concepts. In ACM Multimedia'99, Orlando, FL, November 1999.

[13] K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in Computational Grids. In Proc.

of the 8-th IEEE Int'l Symp. on High Performance Distributed Computing, pages 219{228, Redondo

Beach, CA, USA, July 1999.

[14] W.J.A. Denissen, V.J. Korstanje, and H.J. Sips. Integration of the HPF Data-parallel Model in the CoSy

Compiler Framework. In 7th International Conference on Compilers for Parallel Computers (CPC'98),

pages 141{158, Linkoping, Sweden, June 1998.

[15] D. Dubbeldam, A.G. Hoekstra, and P.M.A. Sloot. Computational Aspects of Multi-Species Lattice-Gas

Automata. In P.M.A. Sloot, M. Bubak, A.G. Hoekstra, and L.O. Hertzberger, editors, High-Performance

Computing and Networking (HPCN Europe '99), Amsterdam, The Netherlands, number 1593 in Lecture

Notes in Computer Science, pages 339{349, Berlin, April 1999. Springer-Verlag.

[16] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Int. Journal of Super-

computer Applications, 11(2):115{128, Summer 1997.

[17] I. Foster and C. Kesselman, editors. The GRID: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, 1998.

[18] A.S. Grimshaw and Wm. A. Wulf. The Legion Vision of a Worldwide Virtual Computer. Comm. ACM,

40(1):39{45, January 1997.

[19] C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends. Towards an Order-N DFT method.

Theor. Chem. Acc., 99:391{403, 1998.

[20] S. Ben Hassen, H.E. Bal, and C. Jacobs. A Task and Data Parallel Programming Language based on

Shared Objects. ACM. Trans. on Programming Languages and Systems, 20(6):1131{1170, November

1998.

17



[21] K.A. Iskra, Z.W. Hendrikse, G.D. van Albada, B.J. Overeinder, and P.M.A. Sloot. Experiments with

Migration of PVM Tasks. In Research and Development for the Information Society Conference Pro-

ceedings (ISThmus 2000), pages 295{304, 2000.

[22] K.A. Iskra, F. van der Linden, Z.W. Hendrikse, B.J. Overeinder, G.D. van Albada, and P.M.A. Sloot.

The implementation of Dynamite | an environment for migrating PVM tasks. ACM OS Review

(submitted), 2000.

[23] E. Kaletas, A.H.J. Peddemors, and H. Afsarmanesh. ARCHIPEL Cooperative Islands of Information.

Internal report, University of Amsterdam, Amsterdam, The Netherlands, June 1999.

[24] D. Kandhai. Large Scale Lattice-Boltzmann Simlations: Computational Methods and Applications. PhD

thesis, University of Amsterdam, Amsterdam, The Netherlands, 1999.

[25] D. Kandhai, A. Koponen, A.G. Hoekstra, M. Kataja, J. Timonen, and P.M.A. Sloot. Lattice Boltzmann

Hydrodynamics on Parallel Systems. Computer Physics Communications, 111:14{26, 1998.

[26] A.M. Kermarrec, I. Kuz, M. van Steen, and A.S. Tanenbaum. A Framework for Consistent, Replicated

Web Objects. In Proceedings of the 18th International Conference on Distributed Computing Systems

(ICDCS), May 1998.

[27] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MagPIe: MPI's Collective

Communication Operations for Clustered Wide Area Systems. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 131{140, Atlanta, GA, May 1999.

[28] D. Koelma, P.P. Jonker, and H.J. Sips. A software architecture for application driven high perfor-

mance image processing. Parallel and Distributed Methods for Image Processing, Proceedings of SPIE,

3166:340{351, July 1997.

[29] K. Langendoen, R. Hofman, and H. Bal. Challenging Applications on Fast Networks. In HPCA-4

High-Performance Computer Architecture, pages 125{137, Las Vegas, NV, February 1998.

[30] J. Leiwo, C. H�anle, P. Homburg, C. Gamage, and A.S. Tanenbaum. A security design for a wide-area

distributed system. In Proc. Second Int'l Conf. Information Security and Cryptography (ICISC'99), In

LNCS 1878, December 1999.

[31] J. Maassen, R. van Nieuwpoort, R. Veldema, H.E. Bal, and A. Plaat. An EÆcient Implementation

of Java's Remote Method Invocation. In ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 173{182, Atlanta, GA, May 1999.

18



[32] J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugmimoto. GRAPE-4: A Massively-parallel Special-purpose

Computer for Collisional N-body Simulation. Astrophysical Journal , (480):432{446, 1997.

[33] B.J. Overeinder, A. Schoneveld, , and P.M.A. Sloot. Self-Organized Criticality in Optimistic Simulation

of Correlated Systems. Submitted to Journal of Parallel and Distributed Computing, 2000.

[34] G. Pierre, I. Kuz, M. van Steen, and A.S. Tanenbaum. Di�erentiated Strategies for Replicating Web

Documents. In Proc. 5th International Web Caching and Content Delivery Workshop, May 2000.

[35] A. Plaat, H. Bal, and R. Hofman. Sensitivity of Parallel Applications to Large Di�erences in Band-

width and Latency in Two-Layer Interconnects. In Fifth International Symposium on High-Performance

Computer Architecture, pages 244{253, Orlando, FL, January 1999. IEEE CS.

[36] E. Reinhard, A. Chalmers, and F.W. Jansen. Hybrid scheduling for parallel rendering using coherent

ray tasks. In J. Ahrens, A. Chalmers, and Han-Wei Shen, editors, 1999 IEEE Parallel Visualization

and Graphics Symposium, pages 21{28, October 1999.

[37] L. Renambot, H.E. Bal, D. Germans, and H.J.W. Spoelder. CAVEStudy: an Infrastructure for Com-

putational Steering in Virtual Reality Environments. In Ninth IEEE International Symposium on High

Performance Distributed Computing, Pittsburgh, PA, August 2000.

[38] J.W. Romein, A. Plaat, H.E. Bal, and J. Schae�er. Transposition Table Driven Work Scheduling in

Distributed Search. In 16th National Conference on Arti�cial Intelligence (AAAI), pages 725{731,

Orlando, Florida, July 1999.

[39] H.J. Sips, W. Denissen, and C. van Reeuwijk. Analysis of Local Enumeration and Storage Schemes in

HPF. Parallel Computing, 24:355{382, 1998.

[40] P.M.A. Sloot and B.J. Overeinder. Time Warped Automata: Parallel Discrete Event Simulation of

Asynchronous CA's. In Proceedings of the Third International Conference on Parallel Processing and

Applied Mathematics, number 1593 in Lecture Notes in Computer Science, pages 43{62. Springer-Verlag,

Berlin, September 1999.

[41] L. Smarr and C.E. Catlett. Metacomputing. Communications of the ACM, 35(6):44{52, June 1992.

[42] P.F. Spinnato, G.D. van Albada, and P.M.A. Sloot. Performance Analysis of Parallel N-Body Codes.

In High-Performance Computing and Networking (HPCN Europe 2000), number 1823 in Lecture Notes

in Computer Science, pages 249{260. Springer-Verlag, Berlin, May 2000.

19



[43] H.J.W. Spoelder, L. Renambot, D. Germans, H.E. Bal, and F.C.A. Groen. Man Multi-Agent Interaction

in VR: a Case Study with RoboCup. In IEEE Virtual Reality 2000 (poster), March 2000. The full paper

is online at http://www.cs.vu.nl/~renambot/vr/.

[44] G.D. van Albada, J. Clinckemaillie, A.H.L. Emmen, J. Gehring, O. Heinz, F. van der Linden, B.J.

Overeinder, A. Reinefeld, and P.M.A Sloot. Dynamite - Blasting Obstacles to Parallel Cluster Com-

puting. In High-Performance Computing and Networking (HPCN Europe '99), number 1593 in Lecture

Notes in Computer Science, pages 300{310. Springer-Verlag, Berlin, April 1999.

[45] R. van Nieuwpoort, J. Maassen, H.E. Bal, T. Kielmann, and R. Veldema. Wide-Area Parallel Computing

in Java. In ACM 1999 Java Grande Conference, pages 8{14, San Francisco, California, June 1999.

[46] C. van Reeuwijk, W.J.A. Denissen, F. Kuijlman, and H.J. Sips. Annotating Spar/Java for the Place-

ments of Tasks and Data on Heterogeneous Parallel Systems. In Proceedings CPC 2000, Aussois, January

2000.

[47] C. van Reeuwijk, A.J.C. van Gemund, and H.J. Sips. Spar: a Programming Language for Semi-

automatic Compilation of Parallel Programs. Concurrency Practice and Experience, 9(11):1193{1205,

November 1997.

[48] M. van Steen, F.J. Hauck, G. Ballintijn, and A.S. Tanenbaum. Algorithmic Design of the Globe Wide-

Area Location Service. The Computer Journal, 41(5):297{310, 1998.

[49] M. van Steen, F.J. Hauck, P. Homburg, , and A.S. Tanenbaum. Locating Objects in Wide-Area Systems.

IEEE Communications Magazine, pages 104{109, jan 1998.

[50] M. van Steen, P. Homburg, and A.S. Tanenbaum. Globe: A Wide-Area Distributed System. IEEE

Concurrency, pages 70{78, January-March 1999.

[51] M. van Steen, A.S. Tanenbaum, I. Kuz, and H.J. Sips. A Scalable Middleware Solution for Advanced

Wide-Area Web Services. Distributed Systems Engineering, 6(1):34{42, March 1999.

[52] R. Veldema, R.A.F. Bhoedjang, R.F.H. Hofman, C.J.H. Jacobs, and H.E. Bal. Jackal: A Compiler-

Supported, Fine-Grained, Distributed Shared Memory Implementation of Java. Technical report, Vrije

Universiteit Amsterdam, July 2000.

[53] J. Waldo. Remote Procedure Calls and Java Remote Method Invocation. IEEE Concurrency, pages

5{7, July{September 1998.

20



[54] R.J. Wijngaarden, H.J.W. Spoelder, R. Surdeanu, and R. Griessen. Determination of Two-dimensional

Current Patterns in Flat Superconductors from Magneto-optical Measurements: An EÆcient Inversion

Scheme. Phys.Rev.B, (54):6742{6749, 1996.

21


