
A Distributed-Object Infrastructure for Corporate Websites�

Ihor Kuz
Delft University of Technology

Delft, The Netherlands
I.T.Kuz@its.tudelft.nl

Patrick Verkaik
Vrije Universiteit

Amsterdam, The Netherlands
patrick@cs.vu.nl

Maarten van Steen
Vrije Universiteit

Amsterdam, The Netherlands
steen@cs.vu.nl

Henk J. Sips
Delft University of Technology

Delft, The Netherlands
H.J.Sips@its.tudelft.nl

Abstract

A corporate website is the virtual representation of a cor-
poration or organization on the Internet. Corporate web-
sites face numerous problems due to their large size and
complexity, and the nonscalability of the underlying Web
infrastructure. Current solutions to these problems gener-
ally rely on traditional scaling techniques such as caching
and replication. These are usually too restrictive, however,
taking a one-size-fits-all approach and applying the same
solution to every document. We propose Globe as a founda-
tion upon which to build scalable corporate websites, and
introduce GlobeDoc, a website model based on Globe dis-
tributed shared objects. This paper describes GlobeDoc,
highlighting the design and technical details of the infras-
tructure.

1. Introduction

A corporate website is the virtual representation of a cor-
poration or organization on the Internet. It is typically a
large website that contains a wide variety of information
about or related to that corporation. This information can
range from publicly available marketing and PR informa-
tion, through announcements, news, technical and support
information, to internal information with access restricted to
employees only. Because of its varied character the infor-
mation is usually maintained by a diverse group of people.
Some of the website’s contents may be provided by the mar-
keting department, other parts of the site may be designed
and maintained by individual product groups, and yet other

�This work was sponsored by a grant from the NLnet Foundation. It is
also part of the JERA project funded by the Dutch HPCN foundation.

parts of the site may be maintained by specific regional de-
partments.

Clients of corporate websites vary just as widely. There
is often no single client profile with regards to location, ac-
cess times, access frequency, etc. Clients will access the
site from a wide range of locations, at all times of the day,
and with differing access patterns. A corporate website will
often have to deal with a heavy load, though not every part
of the site will be equally burdened. For example, the pages
describing their products may be very popular, while a page
describing the marketing department’s trip to the zoo will
be much less popular.

More so than other, smaller, websites, corporate websites
face numerous problems due to their large size, complexity,
and the nonscalability of the underlying Web infrastructure.
These problems manifest themselves in the form of subopti-
mal access times to the website, broken links to and within
the website and the presence of wrong or inconsistent in-
formation on the site. Access problems are caused either
by the overloading of servers and their network connections
from too many requests, or by structural problems such as
the server or network being down. Problems with broken
links are usually caused by internal reorganization of the
site, or by unavailable mirrors, while inconsistent informa-
tion is caused by improperly updated mirrors or caches.

Current solutions to these problems generally rely on tra-
ditional scaling techniques such as caching and replication
and include (proxy) caching, mirroring and clustering. The
basic principle behind all of these techniques is that repli-
cating (parts of) the site on multiple servers reduces the load
on any single server and possibly improves access times by
moving the contents closer to the user. Often, however, the
problems are only partially solved. For example, cluster-
ing solves the problem of overloaded servers, but not that
of saturated network connections. At the same time new

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

problems, such as inconsistent documents, are introduced.
What’s more, these solutions are often ad-hoc, leading to a
myriad of different, incompatible, and often unmanageable
solutions. There is, for example, no standard way of creat-
ing consistent Web site mirrors and Web site administrators
often have to create their own solutions, quickly leading to
a situation where many different incompatible and subopti-
mal mirroring approaches are being used.

Many proposed solutions are also too restrictive: they
generally take a one-size-fits-all approach, applying the
same solution to every resource. For example, most caching
solutions have one caching algorithm that is applied to ev-
ery cached Web resource. We claim that, in order for the
Web to scale, it will be necessary to apply distribution solu-
tions to individual Web resources depending on their needs
and characteristics. Thus, while replication-based content
delivery network solutions such as Akamai’s FreeFlow [1]
and Digital Island’s Footprint [7] provide complete replica-
tion services and take care of issues such as automatic redi-
rection of requests and document consistency, we feel that
their approach of assigning a global replication strategy to
all documents is too coarse.

In addition, the naming scheme used in the Web aggra-
vates many of the scalability problems because it is not loca-
tion transparent. Each URL contains a Web server address,
which means that when resolving the URL and retrieving
the resource, only the referenced server can be contacted.
Solutions utilizing clustering or mirroring of Web sites have
to deal with this problem and often come up with schemes
that rewrite Web pages, use dynamic DNS tables, or modify
IP routing tables to allow the address in the URL to refer to
more than one actual server. This problem with naming in
the Web has been widely recognized by the Web commu-
nity and work continues on a location-transparent naming
structure (URNs) [17].

Based on these observations, we claim that a good so-
lution to the problems encountered by corporate websites
must have the following characteristics. The solution must
be scalable, that is, it should offer an infrastructure that is
able to handle a growing number of users, resources, and
requests per resource worldwide. Resource names and ref-
erences must be location transparent, and remain valid if the
resource is moved or distributed over multiple locations. It
must also be flexible and extendible, so that new resources
and new solutions can easily be added (without having to
resort to solutions outside the system). Furthermore, the so-
lution should not degrade overall system performance, and
last, but not least it must be compatible with existing WWW
clients and websites.

We propose Globe as a foundation upon which to build
corporate websites. Globe is a wide-area distributed system
based on the concept of distributed objects that fully encap-
sulate their own distribution policies - including replication,

migration, and partitioning. A detailed description of the
Globe model can be found in [19]. We believe that Globe
has the necessary characteristics to provide a good infras-
tructure for very large websites.

By providing a framework that lets scaling techniques be
applied on a per-object basis, Globe allows scalable compo-
nents and applications to be created. Also, because Globe
allows distribution strategies to be tailored per object it is
possible to provide optimal solutions by applying strategies
based on the object’s (expected) usage and characteristics.

Flexibility and extendibility are provided by Globe’s
interface-based object design and modular object structure.
An interface-based design means that Globe-object clients
call methods through interfaces that are independent of
actual method implementations. Method implementations
can, therefore, change (or be replaced) without modifica-
tion of clients that use them. Internally, Globe objects are
built up modularly out of subobjects. This means that spe-
cific object parts can be replaced without affecting any of
the other parts. It is therefore possible for an object’s distri-
bution strategy, for example, to be replaced without having
to go through the trouble of reimplementing the whole ob-
ject.

Globe also has a scalable naming service that provides
location transparency. In Globe, object names are sepa-
rate from, and independent of, their location: an object may
change its location, or even be replicated, yet keep the same
name. This transparency is achieved by splitting the naming
and locating of objects into two separate services. A name
service is used to resolve symbolic user-defined names to
fully location-independent and globally unique persistent
object identifiers called object handles. Object handles are,
in turn, resolved by a location service to object contact ad-
dresses that describe where and how an object can be con-
tacted. The name and location services will be described in
more detail later.

The goal of this paper is to describe a Globe-based in-
frastructure for corporate websites called GlobeDoc. (Note,
however, that we do not propose to replace the whole Web
with GlobeDoc. We present GlobeDoc as a solution that can
coexist with and be integrated into the existing Web.) We
will focus on the design and technical details of the infras-
tructure rather than on motivation of our (design) choices
as these are already covered elsewhere. Contributions made
by this paper include solutions to how large websites (and
other distributed applications) can be organized and built
using distributed objects in a way that solves many of the
current problems. Recognizing that the Web’s strength is
that everything can be accessed through standard browsers,
we also show how Globe-based websites can be fully inte-
grated into the current Web structure.

The rest of the paper is structured as follows: Section
2 will present the model and system architecture of the

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

GlobeDoc corporate website infrastructure followed by a
detailed description of all the system components in Sec-
tion 3. Section 4 will delve deeper into the design of the
corporate website, describing the objects used and issues
that must be dealt with. Section 5 will examine related work
and Section 6 will conclude with a summary of the project
status and directions for future work.

2. The GlobeDoc corporate website model

2.1. Assumptions and definitions

The following assumptions about (corporate) websites
and their environment are made. A corporate website is ac-
cessible from the Internet or from an internal intranet and
access to the site will be through regular Web browsers. As
the users of corporate websites may reside anywhere in the
world, the site will be accessed from a variety of geographic
regions. The majority of such a website’s contents will be
based on static data and contain regular Web content (e.g.
static HTML pages, images, etc.); only a small percentage
will be dynamically generated or contain streaming content
such as information about the company’s stocks, or a speech
by the company’s president. The website will be heavily
used (by either internal or external users), however this us-
age will not be evenly balanced (i.e., some documents will
be very popular while others will rarely be accessed).

To facilitate further discussion of corporate websites and
distributed-object based websites, we present definitions of
some key concepts. We define a website as a collection of
related Web documents and applications. For example, the
website of a corporation contains a collection of documents
that are in some way related to the corporation. Note that a
website, in our view, may be physically distributed accross
multiple locations. A Web document is defined as a collec-
tion of related Web resources. A Web resource is simply
anything that can currently be accessed over the Web, such
as, HTML pages, images, video clips, audio clips, applets,
etc. The relation between the resources contained in a Web
document is stronger than that between the documents con-
tained in a website. For example, a Web document may
contain the HTML pages that make up a news story plus
the icons and other multimedia elements that are referenced
in the HTML pages. Note that Web documents are static,
that is, they do not contain dynamic content such as dynam-
ically generated, or interactive pages. Web applications
are used to provide such dynamic content. In this paper we
concentrate only on (static) Web documents.

2.2. Distributed-object based website

In our model all Web documents are encapsulated in dis-
tributed objects called GlobeDoc [20] objects (or simply

GlobeDocs). These objects provide a standard interface that
allows the resources making up the document (i.e., its ele-
ments) to be retrieved. To access a website, a client must
look up the GlobeDoc objects that it is interested in and
connect to them. Once connected, the client calls appropri-
ate methods to retrieve the object contents and present them
to its user.

GlobeDoc is based on Globe and as such every
GlobeDoc object is an instance of a Globe distributed ob-
ject. Globe distributed objects are physically distributed,
meaning that they are literally spread out over multiple
address spaces; we call them distributed shared objects
(DSOs). Each DSO consists of a number of local objects,
called local representatives (LRs), one in each address
space covered by the object (see Figure 1). Local objects are
completely contained in one address space and can be im-
plemented in any supported (not necessarily object-oriented
or object-based) language.

Network

A2

A3 A4A5

Local
Representative

Address
Space

Distributed
Shared
Object

A1

Figure 1. A distributed shared object

The benefit of a DSO is that its state can be copied or
partitioned over any of the LRs. In some distributed shared
objects the LRs might contain replicas of the state, in others
the full state might be contained in only one of the LRs, and
in still others each LR might contain only a part of the whole
state. Globe DSOs allow this distribution of state to be de-
termined by the object implementation itself. Because the
state distribution is encapsulated within the object, the repli-
cation or partitioning is transparent, that is, neither clients,
nor other system components need to be aware of an ob-
ject’s distribution policy. An object’s distribution policy
can therefore be set to one that suits the object’s needs (i.e.,
the way that it is used), and need not depend on some global
system policy.

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

2.3. System architecture

2.3.1. Binding and services. To communicate with a DSO
(e.g., a GlobeDoc), a client must bind to the object. This
causes a new LR to be created in the client’s address space,
effectively connecting that address space to the rest of the
DSO. Once an LR is created in a client’s address space, the
client can communicate with the whole DSO by calling (lo-
cal) methods on the LR. The binding process is illustrated
in Figure 2. It can be divided into two main phases: finding
an object and installing the appropriate LR.

4 3

5

Object Handle2

1

6

Contact
Address

Naming Service

Location Service

Client Process
Name

Class

Implementation

Archive

Local Representative

Handle

Implementation Repository

Make contact

Distributed Shared Object

Figure 2. The binding process

In the first phase, a binding client starts by passing a
name of the DSO to the naming service. The Globe nam-
ing service is responsible for mapping a name to a globally
unique, location-independent object handle. The naming
service returns an object handle, which is then passed on to
the location service. The location service maintains a map-
ping of each object handle to a set of contact addresses,
which represent the contact points of a DSO (analogous to
service access points in computer networks). Although nor-
mally more than one of these addresses may be returned to
the binding client, we assume, for simplicity, that only one
address is returned.

In the second phase, the contact address is used to find
and install an appropriate LR in the client’s address space.

The first step of the second phase involves extracting an im-
plementation handle (which identifies an implementation)
from the contact address and passing it to an implementa-
tion repository. The implementation repository finds a cor-
responding implementation and returns it in the form of a
class archive. A class loader subsequently extracts the im-
plementation code from the class archive, loads it into mem-
ory, creates the actual LR and initializes it. Once the LR is
initialized, the client will be able to communicate with other
parts of the DSO. We say that the client is now bound to the
DSO. The LR in the client’s address space is said to be con-
nected to the rest of the DSO.

Splitting the binding process into these different steps
makes the whole system more flexible. As mentioned
above, naming and location are split into separate services
so that object names and object locations can be kept sep-
arate. By separating naming from location, we avoid the
need to change names (as is the case with current URLs)
when an object changes its location or is replicated. The
implementation repository is kept separate from the location
service for a similar reason: an object’s location and its im-
plementations remain independent of each other. Because
performance is important, it is conceivable that contact ad-
dresses will be stored and reused by clients to avoid having
to resolve names and object handles. Although our con-
tact addresses are comparable to the (location-dependent)
object references in CORBA and Java RMI, a Java RMI
object reference, for example, is actually a complete serial-
izable proxy that is handed out between different processes.
By separating implementations from contact addresses, it
becomes possible for us to return client-specific implemen-
tations. Thus, for example, a client that prefers to use only
certified LR implementations may use the same contact ad-
dress as one who also accepts non-certified implementa-
tions.

2.3.2. Structural support. Implementing a website as a
collection of Globe DSOs requires structural support for the
DSOs. This support includes providing address spaces for
LRs, providing access to the services used during binding
(i.e., name service, location service, etc.), and providing a
means to access objects from client Web browsers. Figure 3
shows an infrastructure that provides such support. The fol-
lowing description of requesting a Web page from an object
will highlight the most important components in the figure.
A detailed description of each component is given in the
following section.

In our approach (path A), a browser sends a request
for a Web page (as a URL) to a proxy server that filters
GlobeDoc-specific names from regular URLs. GlobeDoc-
specific names are forwarded to a GlobeDoc gateway, and
regular URLs are forwarded in the normal way (an alterna-
tive, path B, is that requests for embedded URIs are sent di-

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

Translator

Browser

N

Server

Service
Location
Service

LR LR

Network

GatewayProxy

Globe Object

Distributed Shared Object

Naming

Client

Implementation
Repository

Path A
Path B

Figure 3. The Globe website infrastructure

rectly to a gateway and results are returned through a trans-
lator, this will be described in more detail later). The gate-
way is a special instance of a Globe object server and pro-
vides address spaces and service access to LRs. It binds
to the referred object causing a new LR to be created in
the gateway’s address space. This newly created LR con-
nects to another LR (or replica) hosted by a remote Globe
object server (with functionality similar to the GlobeDoc
gateway), and becomes part of the DSO. Once it is bound to
the DSO, the gateway calls a method on the LR requesting
the Web page. This causes the LR (depending on the repli-
cation strategy) to request the page from the remote LR or
look it up in its local state, and return it to the gateway. The
gateway passes the page on to the proxy or translator where
it is packaged in a proper HTTP reply and sent to the Web
browser. Note that when requesting Web pages from objects
that have already been bound to, the whole binding step can
be skipped and the page can be immediately requested from
the LR.

3. System components

We now describe each of the components shown in Fig-
ure 3 in more detail.

3.1. Naming service

The naming service implements a name space for all
Globe distributed objects by mapping object names onto
object handles (which act as unique object identifiers).
Whereas object handles and the contact addresses that
they resolve to are intended for automated processing only,
Globe (and GlobeDoc) object names are user-defined and
human-readable character strings similar to domain and file
names. Globe allows an N-to-1 relationship between these
names and object handles, that is, different names can refer
to the same object handle, but each name refers to exactly
one object handle.

The organization of the Globe name space is very similar
to that used in, for example, UNIX file systems. The name
space is organized as a hierarchical rooted tree in which an
interior node represents a directory, and a leaf node repre-
sents a Globe object. Every edge is labeled with the (sim-
ple) name of the node it points to and a (composite) ob-
ject name is composed of a sequence of the labels repre-
senting a path in the name space. As in UNIX, the labels
are separated by a slash (“/”). An absolute object name,
that is, one that represents a path starting at the root of the
name space, always begins with a slash. Composite ob-
ject names in Globe are always absolute. When used in
the Web, Globe object names follow the URI syntax and

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

are preceded by the “globe” scheme identifier. For ex-
ample, the GlobeDoc name /nl/vu/cs/object/foo becomes
globe://nl/vu/cs/object/foo in a Web environment. Resolv-
ing object names is done in the usual (iterative or recursive)
way and results in the object handle of the object to which
the name refers.

The current name space implementation is largely based
on DNS [14] name servers. In this implementation it is as-
sumed that the root as well as (hierarchically) higher-level
nodes in the name space correspond to regular DNS do-
mains. In theory, leaf nodes, which represent actual DSOs,
and lower-level interior nodes also correspond to DNS do-
mains, but these are implemented in a Globe-specific way.
Such Globe domains, (i.e., Globe-specific as opposed to
regular DNS domains) are implemented by Globe domain
servers. A Globe domain server consists of two parts: a
name server and a naming authority. The name server is
the main part and implements the subtree rooted at the node
represented by the Globe domain. This subtree corresponds
to a DNS zone. Currently our name servers are imple-
mented using BIND8 [2]. The naming authority is a server
colocated on the same machine as the name server and is
the only entity allowed to invoke update operations at the
name server.

To adhere to DNS naming syntax, we transform
a name such as globe://nl/vu/cs/object/foo into
foo.object.cs.vu.nl. When resolving it, the DSO name
(e.g., foo.object.cs.vu.nl) is passed to a DNS resolver
as though it were a regular host name. The resolution
eventually reaches a Globe name server (e.g., the server
for object.cs.vu.nl), where the remainder of the name is
resolved to the appropriate object handle. Details on the
name service implementation can be found in [4].

3.2. Location service

An object handle is resolved to one or more contact ad-
dresses by the location service. As mentioned, an object
handle is a location-independent and universally unique ob-
ject identifier that can be used as a worldwide object ref-
erence. A contact address, on the other hand, describes a
contact point, which is an address where a DSO can be con-
tacted. It contains information about where and how the ob-
ject can be reached. This information is stored in the form
of an implementation handle, which identifies the imple-
mentation of the LR needed to contact the object, and data
used to initialize the LR, which includes the actual network
address of the contact point. While a DSO has only one ob-
ject handle that does not change throughout its life, contact
addresses can be added, removed or updated as necessary.

The location service stores every DSO’s contact ad-
dresses and maintains a mapping of every object handle to a
set of contact addresses. Because of this, it must be capable

object.cs.vu.nl

foo kermit object1

globesite.its.tudelft.nl

bar

DNS

(Domain Name System)

globe.org

Globe domains

Figure 4. DNS based Globe name space

of storing and supporting frequent updates of large num-
bers of contact addresses. It must also be able to efficiently
resolve object handles to contact addresses. To ensure scal-
ability, it is essential that the location service exploits local-
ity.

The location service is implemented as a worldwide dis-
tributed search tree in which all requests for updates and
look-ups are initiated at leaf nodes. If a leaf node cannot
handle a request, the request is forwarded to its parent. In
this way, we exploit locality and achieve scalability. To pre-
vent higher-level nodes from being swamped with requests,
we partition these nodes by dividing the set of object han-
dles using a hashing technique. It is beyond the scope of this
paper to explain in detail the implementation of the location
service. Further information can be found in [18].

3.3. Implementation repository

The implementation repository is a service that stores
LR implementations and makes them available to binding
clients. These implementations are stored and transferred
as class archives, which are files that contain all the im-
plementation code needed by an LR. Storing the entire im-
plementation of an LR in a single class archive makes its
transportation and management easier compared to having
multiple files. In our implementation, a class archive is a
Java jar file and contains the Java class files that form an LR
implementation.

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

When an LR implementation is registered at the imple-
mentation repository it is assigned an implementation han-
dle. The implementation handle is placed in a contact ad-
dress and subsequently used by a binding client to retrieve
(copies of) the implementation. An implementation handle
is an opaque identifier that is generated by the implemen-
tation repository. Currently, we support only file URLs as
implementation handles, that is, a handle simply contains
the path name of a locally available class archive file. Other
schemes, such as those based on ftp or http URLs, may be
preferred for a wide-area system such as the Web. We plan
to support such URLs as well.

Better than URLs, however, are logical names such as
URNs, which are globally unique and location transparent.
Location transparency has the benefit of allowing us to eas-
ily set up a distributed implementation repository without
the drawbacks of having to make its distribution visible to
the users. For example, it becomes easier to move or repli-
cate files without affecting their name as known to users (or
stored in contact addresses).

Besides location transparency, URNs also have the ben-
efit of not having to refer to specific class archive files. In
other words, we can use a URN as a specification for an im-
plementation type. When an implementation handle speci-
fies an LR type, the implementation repository is given the
freedom to choose an appropriate class archive for the re-
questing client. A class archive in this sense thus acts as an
instance of the implementation type of the LR. The choice
for a specific class archive could, for example, be influenced
by the particular platform of a client, or by security require-
ments. In this way, clients binding to Globe objects can
keep control over the code loaded into their address spaces.

3.4. Globe object server (including the gateway)

The GlobeDoc gateway and Globe object server both
provide address spaces and runtime services to LRs. The
difference between the two is that the gateway’s main goal
is to provide clients with access to GlobeDoc LRs and their
methods, while the Globe object server provides an envi-
ronment for non-client Globe LRs. The gateway is usually
placed either very close to a client (e.g., on the same ma-
chine or the same local network) or is actually part of the
client process (e.g. built into a browser). It provides facili-
ties that allow clients to bind to GlobeDocs and call methods
on the resulting LRs.

When the gateway is a separate process, it must provide
an external interface through which clients can bind to a
GlobeDoc and call its methods. This can take the form of a
dedicated RPC-style interface, or a server that accepts cus-
tom HTTP requests from clients. When the gateway is in-
tegrated with the client, the client can perform method calls
directly on the LRs as both are in the same address space.

The client will also have direct access to the Globe run-
time system and can use its services and resources to bind
to DSOs.

A Globe object server always runs as a separate process.
It has a remotely accessible interface that allows LRs, other
Globe object servers, or administrators to request services
from it. These services include binding to an existing DSO,
unbinding from a DSO, creating a DSO and destroying a
DSO. A binding request causes the Globe object server to
bind to the given DSO, resulting in an LR of that DSO be-
ing created in the Globe object server’s address space. Like-
wise, a Globe object server can be requested to unbind from
a DSO, resulting in all LRs of that DSO being removed from
the server’s address space.

In the remainder of this section, we concentrate on the
Globe object server. The GlobeDoc gateway has very simi-
lar semantics, except that it can support only client LRs. In
practice, this means that a GlobeDoc gateway cannot offer
a contact point for a DSO. The most important functions of
both (the gateway and Globe object server) are, however,
that they provide access to services such as the naming and
location service, facilities for binding to a DSO, and local
services to LRs contained in its address space. These issues
are described next.

3.4.1. Access to external services. The naming service,
location service and implementation repository are all ex-
ternal services, that is, they are implemented outside of the
Globe object server. Because LRs (and other runtime sys-
tem components) can access only resources in the Globe
object server’s address space, the runtime system provides
local proxies to the external services. These proxies, called
resolvers, provide local interfaces through which the exter-
nal services can be used. They can be implemented as sim-
ple proxies that forward all requests and replies to and from
the actual services, or they can be more complex, storing
and manipulating their own local state (e.g., to cache re-
sults). The latter are often used to improve system perfor-
mance. Performance of access to external service is impor-
tant because it can greatly affect the overall performance of
the client-to-object binding process.

3.4.2. Support for binding. The Globe object server also
provides the facilities needed for binding. These are en-
capsulated in a binding object, a local object that is part of
the runtime system. Binding in Globe consists of at least
three steps: (1) name resolution, (2) object handle resolu-
tion, and (3) loading and initialization of a LR. Normally,
binding starts at the first step. It is, however, possible to
begin binding at any other step, as long as the information
needed by that step is present. For example, to start bind-
ing at the second step, a client would need to have an object
handle to pass to the location service. A Globe object server

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

might store an object handle as previously returned in step
1 to avoid a name look-up when it is requested to bind to
that same object again later.

When a Globe object server is requested to unbind from
a DSO, effectively, its LR for that DSO has to be discon-
nected from the rest of the DSO. The process of discon-
necting an LR from the rest of a DSO is generally object
specific. For example, in some cases it may be necessary to
migrate the LR’s state to another Globe object server, while
in other cases, it may be safe to simply discard the state
because the LR is, in fact, a replica. Also, if the Globe ob-
ject server was offering a contact address for the DSO, the
corresponding contact addresses would have to be removed
from the location service. Therefore, when unbinding from
a DSO, we assume that the DSO implements its own discon-
nection algorithm. When the LR has been disconnected, the
server simply reclaims local resources and removes the LR
from its address space.

However, it is not always wise to immediately fulfill a
request to unbind from a DSO. Consider, for example, a
GlobeDoc gateway that has just bound to a DSO to retrieve
information for a client. In the same style as HTTP, the
gateway could decide to immediately unbind from the DSO
as soon as it has passed the information to the browser.
However, it may be much more efficient to stay bound to
the DSO, anticipating more requests for that object. In ef-
fect, a server or gateway can decide to cache a binding for
later use. In our current implementation, which supports
only passive Web documents, the effects of caching bind-
ings turns out to be comparable to that of traditional Web
caches.

3.4.3. Local resources. A Globe object server also man-
ages local resources. Providing an address space for LRs is
straightforward; LRs are passive objects, which means that
they do not have an active thread of execution. The Globe
object server, therefore, simply needs to provide memory to
load the LR code. Memory management is handled by a
local garbage collector. In addition, the server provides the
runtime support needed by LR implementations. For ex-
ample, a Java virtual machine and accompanying runtime
library are needed to support Java implementations of LRs.

Although LRs are not active objects, they do require
thread management facilities. For example, a thread is
started whenever a message comes in from another LR. The
thread facilities are provided by the runtime system. The
runtime system also offers access to low-level resources
such as communication points (e.g., sockets) and persistent
storage (such as files on disk). These resources are all of-
fered through standard platform-independent interfaces.

3.5. Local representative

As mentioned earlier, a local representative is a local ob-
ject that is wholly contained in one address space. A lo-
cal representative implements the interfaces exported by its
DSO. Each LR may implement these interfaces in a dif-
ferent way, depending on its role in the distribution strat-
egy of the DSO. For example, in a DSO with only one
copy of the state, there will be a ”primary” LR that con-
tains that state. Other LRs in that DSO will implement the
DSO’s interfaces by simply forwarding requests to the pri-
mary. However, when the state has been replicated across
multiple machines, an LR may hold a local copy of that
state. In that case, when a client invokes a write method,
that method may have to be propagated to all other LRs, as
in active replication.

The aim in Globe is to support object developers by sepa-
rating functionality from distribution. In principle, an object
developer should be able to concentrate only on designing
and implementing the object’s basic functionality as speci-
fied in that object’s interfaces. Separate from this activity,
a developer should concentrate on how that functionality is
to be distributed and replicated across a network. We refer
to the latter as designing and implementing a distribution
strategy. It is this separation of concerns that gives Globe
much of its flexibility.

Separation is achieved by constructing LRs in a modu-
lar way. An LR is built up of (at least) four subobjects,
each responsible for a different part of the functionality, as
shown in Figure 5. The communication and replication sub-
objects work together to implement the distribution strategy
of a DSO. The replication subobject takes care of replica-
tion and consistency issues, while the communication ob-
ject is responsible for exchanging messages with other LRs.
The semantics subobject implements the actual functional-
ity of the DSO. A DSO’s state is generally stored in the
semantics subobject of its LRs. Finally, the control sub-
object takes care of invocations from client processes and
controls interaction between the semantics and replication
subobjects. Details can be found in [19].

We return to precise definitions of interfaces below.

3.6. Browser and translator

Ideally, users should be able to use regular Web browsers
to access GlobeDoc Web documents. Unfortunately, cur-
rent browsers are incapable of resolving GlobeDoc URIs as
they do not understand globe: schemes. A way around this
problem is to use GlobeDoc-aware proxies. These are Web
proxies that filter out GlobeDoc requests and send them to
a (local) GlobeDoc gateway. The gateway binds to the ap-
propriate objects and performs methods on it on behalf of
the user. Any results from the methods are returned to the

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

control

replication user defined

commCallBack

comm

user defined

object

Replication
object

Communication
object

object
Semantics

Control

Figure 5. Local Representative

user’s browser through the proxy. Non-Globe requests are
passed to appropriate servers, as in regular proxies.

A disadvantage of the proxy approach is that all requests
from the browser (including non-GlobeDoc requests) must
be forwarded through the proxy. As a result, the proxy must
be able to handle all the various kinds of schemes supported
in URLs, or forward them to a proxy that can. An approach
that avoids this problem uses a GlobeDoc translator. This
component translates GlobeDoc URIs to what we call em-
bedded URIs. An embedded URI is a regular HTTP URL
that contains an object name and a gateway address, such
as http://globedoc.cs.vu.nl/nl/vu/cs/foo/object. When an
embedded URI link is clicked, an HTTP request for the em-
bedded object name is sent to the gateway. The gateway
binds to the object and calls methods on it as usual, ex-
cept that results are passed to the translator. At the trans-
lator, each link consisting of a GlobeDoc URI, is rewritten
to contain an equivalent embedded URI. The modified re-
sult is then passed on to the browser. In this way, access to
non-GlobeDoc Web resources is not affected by the added
ability to access GlobeDoc resources.

We have recently built a GlobeDoc-aware Web browser.
This is a browser that can natively resolve GlobeDoc URIs
and bind to the corresponding GlobeDoc objects, that is,
it has the gateway functionality built into it. Rather than
build a GlobeDoc-aware browser from scratch, we are in-

vestigating the use of browser plug-ins to add GlobeDoc
functionality to existing browsers. Such plug-ins are loaded
and used when URIs with appropriate scheme identifiers are
accessed. We have currently modified Mozilla (the open-
source version of Netscape’s browser) to support protocol
plug-ins. Microsoft’s Internet Explorer already supports
this extensibility, while Mozilla is officially adding it as
well.

4. GlobeDoc objects

As mentioned earlier, in our model, a website consists of
related Web documents, each encapsulated in a GlobeDoc
object. A GlobeDoc encapsulates an entire Web document
and contains a collection of logically related elements in-
cluding Web pages and other resources such as icons, im-
ages, sounds, etc. Elements in a GlobeDoc may contain
internal as well as external hyperlinks. An internal link
refers to an element in the same GlobeDoc, whereas an ex-
ternal link refers to an element in another GlobeDoc. Every
GlobeDoc assigns one element to be the root, which pro-
vides access to other elements through internal links, and is
comparable to the index.html file. Because we do not say
anything about the contents of an element, every element
has a set of properties associated with it. At the least, these
properties include a MIME type that describes an element’s
contents.

4.1. The GlobeDoc semantics subobject

A GlobeDoc allows elements to be added and removed,
as well as the contents and properties of existing elements to
be modified. Its functionality is implemented by a seman-
tics subobject having a set of predefined interfaces as shown
in Figure 6. Clients use methods from these interfaces to ac-
cess and modify the elements contained in a GlobeDoc.

The document interface contains methods that act on the
document as a whole. It allows elements to be added and
removed, as well as element names to be retrieved. An ele-
ment is always referenced by its name, which is a character
string. The content interface is used to retrieve and set an el-
ement’s contents. The contents are contained in a byte array.
An element’s properties can be set and retrieved through the
property interface. Properties are represented as strings of
(attribute,value) pairs.

Modifying an element is a three-step process. In the first
step, a copy of an element’s contents must be extracted with
the getContent method. Next, the element can be modified
using an appropriate tool, such as an HTML or image edi-
tor. When all modifications have been made, the element is
returned to the GlobeDoc using the putContent method.

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

interface document {
void addElement(name, elementType, contents);
void deleteElement(name);
name getRoot();
name[] allElements();

}

interface content {
contents getContent(name);
void putContent(name, contents);
void putAllContent(name[], contents[]);

}

interface property {
properties getProperties(name);
void setProperties(name, properties);

}

Figure 6. The GlobeDoc interfaces

4.2. Naming

A GlobeDoc, like other Globe DSOs, is referenced
by a location-independent object name. GlobeDoc ele-
ment names are, on the other hand, valid only in the con-
text of a GlobeDoc. To refer to a GlobeDoc element,
therefore, both the GlobeDoc and element names are re-
quired. For convenience, we allow a GlobeDoc URI to
contain both a GlobeDoc home and an element name.
The URI globe://nl/vu/cs/object/gdo:/element.html, for
example, refers to an element named /element.html in
a GlobeDoc named /nl/vu/cs/object/gdo. A GlobeDoc
URI with an empty element name implicitly refers to
the root element. For integration in the current Web,
GlobeDoc URIs can be embedded in URLs, for example as
http://globe.cs.vu.nl/nl/vu/cs/object/gdo:/element.html.

4.3. GlobeDoc replication

Our claim for Globe’s scalability, and thus the reason
for basing corporate websites on Globe, rests on its flexi-
ble approach to distribution strategies. To experiment with
this flexibility we have implemented a number of simple
replication strategies, and are looking into other strategies
that are optimal for large (corporate) websites. The sim-
plest distribution strategy is client/server interaction. In this
strategy there is one LR that acts as a server and contains
all of the object state (i.e., all the elements). The rest of
the LRs are stateless proxies that forward all requests to
and receive all replies from the server. We have also im-
plemented active replication where all the LRs contain full

replicas of the state. Read operations are served locally by
an LR, while write operations are forwarded to and executed
on all LRs. Another strategy that we have implemented is
a simple master/slave variation. Here all LRs have a replica
of the state, but only one master LR is allowed to perform
updates. When the master performs an update it sends a
message to all the other LRs informing them of the update.
Examples of more complex strategies are those that com-
bine replication and caching — some LRs acting as consis-
tent full replicas, and others acting as less consistent pull
caches.

These are all examples of what we call static strategies,
strategies that do not adapt to an object’s circumstances.
We are currently experimenting with adaptive distribution
strategies. These are strategies that monitor an object, de-
tect when its configuration becomes suboptimal, and cause
it to change to a new strategy. Adaptive distribution strate-
gies are especially useful in the face of flash crowds. These
are extreme (but temporary) increases in requests caused by
unexpected interest in some documents. Because a flash
crowd is unexpected the mass of requests coming in usually
overwhelms the server, causing it to fail. By determining
that it is experiencing a flash crowd, a GlobeDoc with an
adaptive distribution strategy can start making widely dis-
tributed replicas, preventing any single replica from becom-
ing overloaded, and thus keeping the document available.
When the flash crowd subsides, the GlobeDoc can recall
the replicas that are no longer being used.

To gain insight into the various replication strategies, we
have performed experiments based on simulations (using
Web server logs) of static and adaptive distribution strate-

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

gies under normal and flash crowd conditions. The results
show us that not only do different documents require dif-
ferent strategies (i.e., a one-size-fits-all approach to replica-
tion strategies is not appropriate) but that adaptive distribu-
tion strategies can (and do) correctly respond to and prevent
problems from flash crowds. Details about these experi-
ments and our results can be found in [15].

Two important aspects of adaptive distribution strategies
are determining when and how to change the strategy (e.g.,
discovering flash crowds), and actually making the changes.
While the former involves monitoring an object’s network
usage and performance and applying heuristics to determine
appropriate changes, the latter involves actually creating
and destroying replicas (LRs). In order to create an LR,
a Globe object server that can host the LR must be found.
To make finding Globe object servers possible we are devel-
oping a Globe virtual network. This is a service that keeps
track of all available Globe object servers and contains in-
formation about every server’s location, available resources
(e.g., disk, memory, network access, persistence, fault tol-
erance, etc.), and authorization requirements (i.e., who is
allowed to use the server).

5. Related work

With the increasing importance of the Web, improving
the performance of the Web in general and large corpo-
rate websites in particular has become a high priority topic.
As such, many commercial and research projects have been
proposed to solve this problem, with the two most popular
approaches being clustering and content delivery networks
(CDN).

Clustering offers distribution of requests among a fixed
set of mirror servers. The greatest challenge in clustering
is to transparently redirect requests to appropriate servers.
Approaches to this transparent redirection range from redi-
rection of requests at the DNS level [11] to redirection in the
routers themselves [6] [5]. While most of these approaches
solve problems such as load balancing, none offer dynamic
or adaptive replication.

CDNs improve on clustering and tackle the dynamic
replication problem. Solutions such as Footprint [7], Free
Flow [1] and RaDaR [16] provide networks of servers that
mirror customer’s sites on demand. They implement dy-
namic strategies that make replication decisions based on a
site’s traffic patterns and client locations. This is similar to
what we propose in our own model, however, we go one
step further and offer an architecture where the actual repli-
cation algorithm can be (dynamically) determined per doc-
ument. We show in [15] that this is essential for achieving
optimal performance.

Current distributed object systems such as CORBA,
DCOM and Java RMI provide remote objects, rather than

physically distributed objects. This means that the actual
object state is always kept at a central server and clients use
simple proxies or stubs to access it. Although it is possible
to modify or augment these systems to provide some form
of replication [8] [12], these modifications always prescribe
a single global replication strategy to all objects. The reason
for this is that modifications are made to the actual middle-
ware layer and services, as opposed to the Globe approach
where the replication strategy is part of the object. As men-
tioned, we feel that support for per-object replication is es-
sential in a wide-area distributed system.

Approaches combining distributed objects and the Web
range from using CORBA or DCOM objects for distributed
back-end processing in servers [3] and combinations of
Java front-ends communicating with distributed object back
ends [10] to complete distributed-object based models of
the Web [9]. The main difference between these and our
approach is the flexibility with regards to distribution strate-
gies that Globe provides.

One model that does provide physically distributed ob-
jects is that based on fragmented objects [13]. Although
fragmented objects have been designed to encapsulate their
own distribution policy, they have not been designed with
worldwide scalability in mind and have not been applied to
the Web.

6. Conclusion and future work

In this paper we have presented GlobeDoc, a scalable ar-
chitecture for corporate websites based on Globe distributed
objects. Globe allows scaling techniques, such as repli-
cation, to be applied on a per-object basis which we be-
lieve is an essential property for a scalable wide-area dis-
tributed system. We have described the GlobeDoc website
model and given details of the system components including
GlobeDoc objects, which are Globe DSO representations of
Web documents.

We have recently built a small GlobeDoc based web-
site (publicly accessible from the Globe home page:
http://www.cs.vu.nl/globe) that implements all the main
components described in this paper (translator, gateway,
Globe object server, GlobeDoc objects, etc.). The service
contains GlobeDocs that encapsulate the Web documents
on the Globe website and is being used as a first test of the
architecture. The general configuration is similar to that in
Figure 3. Each GlobeDoc object is started in its own Globe
object server. However, unlike the Globe object servers de-
scribed in this paper, these servers are very simple and do
not yet offer support for persistence and fault tolerance nor
the possibility of remote management. We have also imple-
mented a Globe-aware version of Mozilla that recognizes
Globe URIs and forwards the requests directly to the gate-
way (bypassing the translator). All GlobeDoc components,

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

except for our adaptation of Mozilla, are implemented in
Java.

Besides this simple GlobeDoc implementation, we are
working on the implementation of a full-blown Globe ob-
ject server, adaptive distribution strategies, and the Globe
virtual network. A complete Globe object server will pro-
vide support for persistence and fault tolerance. At present
we have designed and implemented persistence support and
are researching requirements for fault-tolerant DSOs. With
regards to adaptive distribution strategies we are currently
looking at appropriate heuristics for deciding when and
were to create new replicas. We are also investigating what
replication algorithms are most appropriate for Web docu-
ments and when a document should change algorithms. The
Globe virtual network (described in Section 4) is currently
in the design phase. We have determined the general archi-
tecture and are working towards an implementation. Fur-
thermore, we are investigating how security can be incorpo-
rated into the Globe framework so that security policies can
be attached to individual Globe objects in a similar way as
done with distribution now. All of these components will
be combined to implement a fully distributed website im-
plementation that can be used to perform experiments with
and validate new distribution strategies.

References

[1] Akamai Technologies, Inc. Free Flow.
http://www.akamai.com.

[2] P. Albitz and C. Liu. DNS and BIND. O’Reilly & Asso-
ciates, Sebastopol, CA., 3rd edition, 1998.

[3] Apple. WebObjects. http://www.apple.com/webobjects/.
[4] G. Ballintijn, P. Verkaik, E. Amade, M. van Steen, and A. S.

Tanenbaum. A scalable implementation for human-friendly
URIs. Technical Report IR-466, Vrije Universiteit Amster-
dam, the Netherlands, Nov. 1999.

[5] Cisco Systems. Distributed Director.
http://www.cisco.com/warp/public/cc/cisco/mkt/scale/distr/.

[6] O. P. Damani, P.-Y. Chung, Y. Huang, C. M. R. Kintala, and
Y. M. Wang. One-IP: Techniques for hosting a service on
a cluster of machines. Comp. Netw. ISDN Syst., 29:1019–
1027, 1997.

[7] Digital Island, Inc. Footprint.
http://www.digisle.net/services/cd/footprint.shtml.

[8] P. Felber. The CORBA Object Group Service. A Service Ap-
proach to Object Groups in CORBA. PhD thesis, École Poly-
technique Fédérale de Lausanne, 1998.

[9] D. B. Ingham, M. C. Little, C. J. Caughey, and S. K. Shri-
vastava. W3Objects: Bringing object-oriented technology to
the Web. In Fourth Int’l WWW Conf., Boston, Mass., Dec.
1995.

[10] Iona Technologies. OrbixWeb.
http://www.iona.com/products/orbixweb/.

[11] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP
server: The NCSA prototype. In First Int’l WWW Conf.,
April 1994.

[12] J. Maassen, T. Kielmann, , and H. E. Bal. Efficient replicated
method invocation in java,. In ACM 2000 Java Grande Con-
ference, San Francisco, CA, June 2000.

[13] M. Makpangou, Y. Gourhant, J. Le Narzul, and M. Shapiro.
Fragmented objects for distributed abstractions. In Readings
in Distributed Computing Systems. IEEE Computer Society
Press, July 1994.

[14] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034, Nov. 1987.

[15] G. Pierre, I. Kuz, M. van Steen, and A. S. Tanenbaum. Dif-
ferentiated strategies for replicating Web documents. In
Fifth Int’l Web Caching and Content Delivery Workshop,
May 2000.

[16] M. Rabinovich and A. Aggarwal. RaDaR: A scalable ar-
chitecture for a global Web hosting service. In Eighth Int’l
WWW Conf., May 1999.

[17] K. Sollins and L. Masinter. Functional requirements for uni-
form resource names. RFC 1737, Dec. 1994.

[18] M. van Steen, F. J. Hauck, G. Ballintijn, and A. S. Tanen-
baum. Algorithmic design of the Globe wide-area location
service. The Computer Journal, 41(5):297–310, 1998.

[19] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe:
A wide-area distributed system. IEEE Concurrency, pages
70–78, Jan. 1999.

[20] M. van Steen, A. S. Tanenbaum, I. Kuz, and H. J. Sips. A
scalable middleware solution for advanced wide-area Web
services. Distributed Systems Engineering, 6(1):34–42,
1999.

0-7695-0819-7/00 $10.00 @ 2000 IEEE
The Proceedings of the International Symposium on Distributed Objects and Applications (DOA'00)

