
A Scalable Middleware Solution for
Advanced Wide-Area Web Services

Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit, Fac. Math. & Comp. Sc.
De Boelelaan 1081a, 1081 HV Amsterdam
steen,ast @cs.vu.nl

Ihor Kuz, Henk J. Sips
Delft University of Technology, Dept. Comp. Sc.
Zuiderplantsoen 4, 2628 BZ Delft
i.t.kuz,h.j.sips @cs.tudelft.nl

Abstract
To alleviate scalability problems in the Web, many researchers concentrate on how
to incorporate advanced caching and replication techniques. Many solutions incor-
porate object-based techniques. In particular, Web resources are considered as dis-
tributed objects offering a well-defined interface.

We argue that most proposals ignore two important aspects. First, there is little
discussion on what kind of coherence should be provided. Proposing specific caching
or replication solutions makes sense only if we know what coherence model they
should implement. Second, most proposals treat all Web resources alike. Such a one-
size-fits-all approach will never work in a wide-area system. We propose a solution
in which Web resources are encapsulated in physically distributed shared objects.
Each object should not only encapsulate state and operations, but also the policy by
which its state is distributed, cached, replicated, migrated, etc.

Keywords
Worldwide scalable middleware, distributed systems, World-Wide Web, distributed
Web services



1 INTRODUCTION

As the Web continues to gain popularity, we are increasingly confronted with its
limited scalability. Web servers are often unreachable due to an overload of requests
for pages. Likewise, we are faced with long downloading times caused by bandwidth
limitations and unreliable links. Many of these problems are caused by the growing
number of users and the steadily increasing size of resources such as images, audio,
and video.

Traditional scaling techniques, such as caching and replication (Neuman, 1994),
have been applied as solutions. Unfortunately, inherent to these techniques are con-
sistency problems: modifications to one copy of a cached or replicated Web page
makes that copy different from the other replicas. Also, most proposals assume that a
single consistency model is required and appropriate for all resources. With the large
variety of Web pages already existing, and the increasing alternative applications of
Web technology, it is clear that such a one-size-fits-all approach will eventually fail.
Instead, different consistency models based on the content and semantics of Web
resources will need to coexist if we are to solve scalability problems.

Consider, for example, a seldom-accessed personal home page. Caching such a
page is hardly effective and doing so simply wastes storage capacity. On the other
hand, it could make sense to actively push updates of popular home pages to areas
with many clients in order to reduce bandwidth and latency problems. Other exam-
ples easily come to mind.

Another problem faced by the Web is its limited flexibility with regards to the in-
troduction of new resources and services. Although nonstandard resources, such as
Java applets, have been integrated into the Web, the means by which this is done usu-
ally requires a unique solution for each new type of resource. Creating such solutions
is not always an easy task, and they are rarely elegant.

It is clear that a different approach is needed to overcome the limited scalability of
the current Web. Our starting point is that caching and replication are crucial to scala-
bility, but that effective solutions can be constructed only if we take application-level
requirements into account. In this light, we are currently developing an object-based
middleware solution called Globe. Key to our approach are physically distributed
objects that encapsulate not only state and methods, but also complete distribution
policies. In other words, each object in our approach carries its own solution to the
distribution of its state, including how that state is partitioned, replicated, migrated,
etc. Consequently, all implementation aspects are hidden from clients, who see only
the interfaces offered by the object.

By offering a framework that allows us to apply scaling techniques on a per-object
basis, we will be able to develop worldwide scalable components from which the
next generation of networked applications can be built. To demonstrate the feasibil-
ity of our approach, we are currently developing a large-scale, wide-area distributed
Web service. The service is transparently distributed across a (potentially large) num-
ber of servers in a global network. In this paper we describe Globe and its application
to the Web service.



This paper makes two main contributions. First, we show how scalability problems
in wide-area systems can be alleviated by a middleware solution in which objects are
physically distributed and fully encapsulate their own distribution policy. Second,
we describe an alternative organization of Web-based applications that allows us to
deal with distributed Web resources in an elegant and scalable way. We also show
how our service can be fully integrated into the current Web.

The paper is organized as follows. In Section 2 we describe the basic approach
followed in Globe. How Globe can be used to build a wide-area distributed Web
service is described in Section 3, which is partly based on our experience with a Java
prototype. Related work is described in Section 4; we conclude in Section 5.

2 SCALABLE DISTRIBUTED OBJECTS

2.1 Distributed-Object Technology

An important goal of distributed systems is distribution transparency: providing a
single-system view despite the distribution of data, processes, and control across
multiple machines. Examples include transparency of access, locaton, migration,
replication, and persistence. Object technology came into vogue some years ago
as the means for realizing transparency in distributed systems. For example, ac-
cess transparency can be achieved by following an interface-based approach as is
in CORBA (OMG, 1997) and ILU (Janssen and Spreitzer, 1996). Likewise, location
and migration transparency can be supported by means of forwarding pointers as in
the Emerald system (Jul et al., 1988) and more recently in the Voyager toolkit (Ob-
jectSpace, 1997). Finally, seamless integration of object persistence has been inves-
tigated for distributed systems such as Spring (Radia et al., 1993).

However, when we take a closer look at the way distribution is actually supported
in object-based systems, it appears that objects are used only in a restricted way to
address transparency problems. For example, all well-known systems today adopt
the remote object model. In this model, an object is located at a single location only,
whereas the client is offered access transparency through a proxy interface. At best,
the object is allowed to move to other locations without having to explicitly inform
the client.

There are a number of serious drawbacks to the remote object model, most notably
its lack of scalability. To alleviate scalability problems it is necessary to apply tech-
niques such as caching and replication. This means that multiple copies of the object
reside at different locations. Having only a remote invocation mechanism available,
we now have to solve the problem how an invocation is to be propagated between
the object replicas. Unfortunately, there is no standard solution. For active replica-
tion, an invocation or the results could be shipped to every replica. In addition, we
generally have to implement a total ordering on concurrent invocations. In the case
of passive replication, update invocations are to be propagated to a master copy only,



whereas read invocations can often be performed at backup copies. There are numer-
ous variations on this theme.

The remote object model itself provides no mechanisms that support a developer
in designing and implementing different invocation schemes, which is necessary if
we are to apply scaling techniques such as caching, replication, and distribution.

2.2 Globe: An Alternative Approach

As an alternative to the remote object model, we have developed a model in which
processes interact and communicate through distributed shared objects. Like dis-
tributed objects in other models, an object offers one or more interfaces, each con-
sisting of a set of methods. Objects are passive, but multiple processes may simulta-
neously access the same object. Changes to the object’s state made by one process
are visible to the others. However, unlike any other model, a distributed object in
Globe is physically distributed, meaning that its state may be partitioned and repli-
cated across multiple machines at the same time. Clients of an object are unaware
of such a distribution: they see only the interface(s) made available to them by the
object.

Besides being physically distributed, each object fully encapsulates its own dis-
tribution policy. In other words, there is no system-wide policy imposing how an
object’s state should be distributed and kept consistent. For example, we may have a
distributed object whose state is replicated at each client, and where method invoca-
tions are forwarded to all clients. Another object may have adopted an approach in
which state updates always occur at a master copy and are subsequently shipped to
the replicas. Likewise, there may be objects that move their state between locations,
have their state highly secured against malicious clients, or keep state at highly fault
tolerant servers only. The important thing is that clients need not be aware of such
details as they are hidden behind an object’s interface.

In order for a process to invoke an object’s method, it must first bind to that object
by contacting it at one of the object’s contact points. A contact address describes
such a contact point, specifying a network address and a protocol through which the
binding can take place. Binding results in an interface belonging to the object being
placed in the client’s address space, along with an implementation of that interface.
Such an implementation is called a local object. This model is illustrated in Figure 1.

2.2.1 Architecture of a Distributed Shared Object
A local object resides in a single address space and communicates with local objects
in other address spaces. Each local object is composed of several subobjects, and is
itself again fully self-contained as also shown in Figure 1. Ignoring security issues,
a minimal composition consists of the following four subobjects.

Semantics subobject. This is a local subobject that implements (part of) the actual
semantics of the distributed object. As such, it encapsulate the functionality of the
distributed object. The semantics subobject consists of user-defined primitive ob-



Figure 1 Example of an object distributed across four address spaces.

jects written in programming languages such as Java, C, or C++. These primitive
objects can be developed independent of any distribution or scalability issues.

Communication subobject. This is generally a system-provided subobject. It is re-
sponsible for handling communication between parts of the distributed object that
reside in different address spaces. Depending on what is needed from the other
components, a communication subobject may offer primitives for point–to–point
communication, multicast facilities, or both.

Replication subobject. The global state of the distributed object is made up of the
state of its various semantics subobjects. Semantics subobjects may be replicated
for reasons of fault tolerance or performance. In particular, the replication subob-
ject is responsible for keeping these replicas consistent according to some (per-
object) coherence strategy. Different distributed objects may have different repli-
cation subobjects, using different replication algorithms.
An important observation is that the replication subobject has a standard inter-
face. However, implementations of that interface will generally differ between
replication subobjects. In a sense, this subobject behaves as a meta-level object
comparable to techniques applied in reflective object-oriented programming.



Control subobject. The control subobject takes care of invocations from client pro-
cesses, and controls the interaction between the semantics subobject and the repli-
cation subobject. This subobject is needed to bridge the gap between the user-
defined interfaces of the semantics subobject, and the standard interfaces of the
replication subobject.

A key role, of course, is reserved for the replication subobject. An important obser-
vation is that communication and replication subobjects are unaware of the meth-
ods and state of the semantics subobject. Instead, both the communication subobject
and the replication subobject operate only on invocation messages in which method
identifiers and parameters have been encoded. This independence allows us to define
standard interfaces for all replication subobjects and communication subobjects.

2.2.2 Client-to-Object Binding
To communicate with a distributed object, it is necessary for a process to first bind to
that object. Binding consists roughly of two phases: finding the object, and installing
the interface. This process is illustrated in Figure 2.

Figure 2 Binding a process to a distributed shared object.

To find an object, a process must pass a name of that object to a naming service
that can resolve that name (step in Figure 2). The naming service returns an
object handle (step ), which is a location-independent and universally unique
object identifier, such as a 128-bit number, which is used to locate objects. It can be
passed freely between processes as an object reference. The object handle is given
to a location service, which returns one or several contact addresses (step ).



This organization of a naming and a location service allows us to separate issues
related to naming objects from those related to contacting objects. In particular, it is
now easy to support multiple and independent (human-readable) names for an ob-
ject, analogous to multiple links to a file name in UNIX. Because an object handle
does not change once it has been assigned to an object, a user can easily bind a
private, or locally shared name to an object without ever having to worry that the
name–to–object binding changes without notice. On the other hand, an object can
update its contact addresses at the location service without having to consider under
which name it can be reached by its clients. However, we do require a scalable lo-
cation service that can handle frequent updates of contact addresses in an efficient
manner. We have designed such a service (van Steen et al., 1998) and are currently
implementing a prototype version that is being tested on the Internet.

Once a process knows where it can contact the distributed object, it needs to select
a suitable address from the ones returned by the location service. A contact address
may be selected for its locality, but there may also be other criteria for preferring one
address over another.

A contact address describes where and how the requested object can be reached.
The latter is contained as protocol information in the contact address. The protocol
information is used to load classes from a (trusted) implementation repository, and to
subsequently instantiate those classes (step in Figure 2). Finally, the client needs
to contact the distributed shared object (step ). The local object implements the
interface(s) offered by the distributed shared object.

3 SCALABLE DISTRIBUTED WEB SERVICES

To illustrate how our approach can be applied to solve scalability problems of the
World-Wide Web, we are currently developing a Globe-based distributed Web ser-
vice. In this section we explain how such a service can be designed and implemented
using the Globe middleware solution.

3.1 Overview of the Globe Web Service

3.1.1 Globe Web Documents
The essence of a Globe-based Web service is that it allows clients access to Globe
Web documents, referred to as GlobeDocs. Conceptually, a GlobeDoc is a distributed
shared object containing a collection of logically related Web pages. Each page may
consist of text, icons, images, sounds, animations, etc., as well as applets, scripts,
and other forms of executable code. We refer to these parts as page elements. The
hyperlinked structure as normally provided by Web pages is maintained in a Globe-
Doc. An internal hyperlink that is part of some page, refers to a page element on
that same page or on another page contained in the same GlobeDoc. An external
hyperlink refers to a page element of another GlobeDoc.

For simplicity, all pages, page elements, and hyperlinks of a GlobeDoc are col-



Table 1 Interfaces offered by the semantics object of GlobeDocs

Interface Contains methods for

Document interface Listing, adding, and removing pages to a GlobeDoc
Page interface Listing, adding, and removing elements to a page
Content interface Reading and writing the content of a page
Attribute interface Attributes of page elements, such as type, last modification date, etc.

lected into a single archive, which is subsequently wrapped into a (nondistributed)
semantics subobject. This semantics subobject offers several interfaces as shown in
Table 1. In principle, these interfaces are available to each client that is bound to the
GlobeDoc. Details on how these interfaces are implemented are described in Sec-
tion 3.2.

3.1.2 Document Coherence
What makes our approach unique compared to existing Web services, is that each
GlobeDoc has its own associated distribution policy. For example, a document con-
taining personal information as in the case of ordinary personal home pages, may
support a policy by which updates are always done at a master copy and clients are
offered only remote access to that copy. On the other hand, a document consisting of
a shared whiteboard may adopt a policy by which each client has local access to a
full replica of the whiteboard, and by which updates are immediately propagated to
all other clients. Other distribution policies can easily be associated with a document
and will generally depend on what, how, and where the document offers functionality
to its clients.

For our distributed Web service, we are currently concentrating primarily on scal-
ability. Security issues are subject to present research, of which the results will be
incorporated in due time.

Instead of tackling scalability problems by focusing directly on caching and repli-
cation, we advocate that it is necessary to concentrate first on coherence issues. Co-
herence deals with the effect of read and write operations by different clients on a
possibly replicated distributed object, as viewed by clients of that object. Caching
and replication are part of coherence protocols, which implement a specific coher-
ence model. In Globe, we distinguish two types of coherence models:

Object-centric coherence models describe the coherence a distributed shared ob-
ject offers to concurrently operating clients. The models are based on those de-
veloped for distributed shared memory systems, and include sequential, PRAM,
causal, and eventual consistency (Tanenbaum, 1995).

Client-centric coherence models allow a client to express its own coherence re-
quirements. Our approach here is similar to work done in the Bayou project (Terry
et al., 1994). Bayou provides mobile users weak consistency support in a repli-
cated database. We have basically retained their models, which include scenarios
for monotonic writes, monotonic reads, writes follow reads, and read your writes.



Details on our support for coherence models are described elsewhere (Kermar-
rec et al., 1998). Important for our present discussion, is that each GlobeDoc has
an associated object-centric coherence model, which is implemented by means of
the replication and communication objects described in Section 2.2.1. In addition,
implementations are provided to support client-centric coherence models as well.

3.1.3 System Architecture
It is necessary to offer storage facilities for the various components that comprise a
document. In particular, being a distributed shared object, a GlobeDoc will generally
consist of a number of replicas, each replica located at a different machine. In our
model, each replica is kept at a store. In principle, clients may perform read and
write operations at any store where the document resides, that is where a replica is
located. We distinguish three different types of stores:

Permanent stores implement persistence of a GlobeDoc. This means that if there
is currently no client bound to the document, the document will be kept only at
its associated permanent stores. The permanent stores keep replicas consistent
according to the object-centric coherence model that the document offers to its
clients. A Web server is an example of a permanent store.

Object-initiated stores are installed as the result of the document’s global repli-
cation policy. Replicas are kept consistent independent of clients although these
stores may, for performance reasons, support a weaker coherence model than the
one guaranteed by the permanent stores. A typical example of an object-initiated
store is a mirrored Web site.

Client-initiated stores are comparable to caches. They are installed independent
of the replication policy of the document and fall under the regime of the client
processes that read and update the document. A site-wide cache at a Web proxy
is an example of a client-initiated store.

Stores are organized in a layered fashion as shown in Figure 3. This architecture
allows us to separate replicas managed by servers (permanent and object-initiated
stores) from those managed by clients (client-initiated stores). Whereas permanent
stores must implement a document’s coherence model, object-initiated and client-
initiated stores may offer weaker coherence, but perhaps offering the benefit of
higher performance. Effectively, for some applications, some delay in propagating
a change is often acceptable. It is generally up to the client to decide to which replica
it will bind.

3.1.4 Integration with the Current Web
It is important that GlobeDocs are integrated into the current Web infrastructure such
that they can be accessed and manipulated by existing tools such as browsers. Our
approach is to use a filtering gateway that communicates with standard Web clients
(e.g. browsers). The main purpose of the gateway is to allow standard Web clients



Figure 3 A system model for replicated Globe Web documents (GlobeDocs).

that communicate through HTTP, to access GlobeDocs. The gateway is a process that
runs on a local server machine and accepts regular HTTP requests for a document. In
our model, GlobeDocs are distinguished from other Web resources through naming.
A Globe name is written as a Globe URL, that is a URL with globe as scheme
identifier. So, for example, globe://cs.vu.nl/ steen/globe/ could be the name of our
project’s home document, constructed as a distributed shared object.

The gateway accepts all URLs. Normal URLs are simply passed to existing (proxy)
servers, whereas Globe URLs are used to actually bind to the named distributed
shared object. Because most browsers cannot handle extensions to the URL name
space, we are forced to build a front end that translates Globe URLs to a form that is
embedded in an HTTP URL. For example, globe://cs.vu.nl/ steen/globe/ is embed-
ded into the HTTP URL http://globe.cs.vu.nl/ steen/globe/. When a Globe URL is
passed to the gateway, the gateway binds to the GlobeDoc named by that URL, and
passes the document’s state in HTML form to the browser. In this way clients are
unaware of the fact that they have actually accessed a distributed shared object.

The drawback of this approach is that we are constrained to the functionality of
Web clients. In particular, this means that it may be hard to support GlobeDocs con-
taining interactive parts. Ideally, we can make use of extensible browsers that can
dynamically download the necessary support code for actually binding to distributed
shared objects and subsequently presenting the object’s interfaces to the user. Unfor-
tunately, such browsers are not commonly available.

However, it is realistic to assume that Web clients support Java. In that case, a
GlobeDoc having interactive content should provide a Java applet that can be down-
loaded into the client’s browser, and which subsequently presents the object’s inter-
faces in any way that is felt appropriate by the developer of the document. Effectively,
we are extending the distributed shared object to the Web client by means of a simple
Java applet instead of using a Globe local object. This situation is shown in Figure 4,
and is the approach followed in our prototype.



Figure 4 Using Java-enabled browsers to interface to interactive GlobeDocs.

3.2 Constructing a GlobeDoc

There are many ways to actually construct a GlobeDoc and make it available as
a distributed shared object. In the following, we outline a solution which we are
currently deploying.

3.2.1 Constructing the First Replica
Completely analogous to the construction of Web pages, a GlobeDoc is constructed
by first providing all the necessary content. This includes HTML files containing
hyperlinks, files containing executable code, files for images, audio, etc. All these
content files are then collected into a state archive. Effectively, a state archive is
a structured representation of the information offered by a document. In our initial
set-up, a state archive is transferred as a whole to clients, although it will also be
possible to transfer only those parts that a client needs.

Besides providing the state archive, a developer will also construct definitions
of the interfaces containing the methods that give access to a document’s content.
In the case that the GlobeDoc consists of only noninteractive data, such as HTML
text, animations, etc., we envisage that all interfaces and their implementations can
be generated automatically from the archive. For interactive parts, such as editors,
spreadsheets, whiteboards, and calculators, a developer explicitly specifies interfaces
in the Globe Interface Definition Language (Globe IDL). Note that a developer may
provide several implementations of the same interface. For example, clients of a
document containing a calculator, may be offered a choice between an interpreted
and a compiled version.

A state archive combined with the appropriate interfaces and their implementa-
tions, is in fact a semantics object. We separate the interfaces and implementations
from the actual state, by collecting the former in a class archive. A class archive not
only contains implementations, but also identifies how those implementations are to
be (down)loaded by a client.

Taking the interface definitions of the semantics subobject, we then generate one
or more implementations for the control subobject, and add those to the class archive.

The next important step is to select an object-centric coherence model for the



GlobeDoc, and add implementations for the replication and communication subob-
ject of that model to the class archive. In addition, implementations of the client-
centric coherence models that will be supported also are added to the class archive.
We envisage that a developer will generally choose default implementations provided
as part of the development kit for documents, and possibly fine-tune those to specific
requirements. However, there is nothing that prevents a developer from providing his
own implementation of a coherence model.

As we have described so far, a Web document consists of a separate state and class
archive. Of course, it is also possible to construct more than one state or class archive,
or alternatively to combine them into a single archive. For our present discussion we
ignore such alternatives.

3.2.2 Making a GlobeDoc Worldwide Available
Having state and class archives allows us to actually construct a distributed shared
object to which clients can bind. First, we make the class archive available by storing
it in one or more implementation repositories. Such a repository can be as simple
as an ftp-able file system, or as sophisticated as a worldwide distributed database. We
assume that when a class archive is stored, the repository returns an implementation
handle that can be uniquely resolved to the archive. We return to this aspect below.

The state and class archives are initially combined at one permanent store, where
the first replica is subsequently instantiated. The store returns a network address that
can be used to contact the replica. If the store is willing to make the class archive
available as well, that is it willing to act also as an implementation repository, it will
additionally return an implementation handle. At this point, we have actually created
a distributed shared object. More replicas can be registered at other permanent stores,
provided those stores cooperate in keeping the replicas consistent. In principle, this
requires the stores to run the implementation of the coherence model as contained in
the class archive forming part of the replica.

The distributed shared object is registered at the Globe location service, which
subsequently returns an object handle. A network address that has been returned by
a permanent store, is taken together with one or more implementation handles as
returned by the repositories, to form a contact address. Note that the implementation
handles implicitly describe the protocol by which the object can be contacted. These
contact addresses are subsequently inserted into the location service so that they can
be looked up by clients. The final step consists of registering the object handle at one
or more (worldwide) naming services.

3.3 Client-to-Document Binding

Binding a client to a GlobeDoc is now fairly straightforward. We first describe the
simple binding process in which a client contacts a document at one of its permanent
stores. We then proceed by explaining how client-initiated stores, such as caches, can
be used.



3.3.1 Simple Binding through Permanent Stores
After looking up a contact address for a document through the naming and loca-
tion service, a client passes the implementation handles contained in that contact
address to a local implementation service. This service is responsible for selecting
and downloading an appropriate implementation. An implementation may not be
appropriate for several reasons. For example, the client or the local implementation
service may require that an implementation has been certified by a specific authority.
Another possible reason is that an implementation does not match the architecture of
the client machine, or that specific libraries are not available.

An implementation handle implicitly refers to the repository where the class archive
is stored. In the case of simple repositories, such as an ftp-able file system, the imple-
mentation handle may consist of an IP address and a pathname identifying the class
archive. More sophisticated solutions exist as well. For example, an object-oriented
database may offer a front end to its clients in the form of a distributed shared object.
In that case, an implementation handle may contain an object handle that is to be
resolved to a contact address for that front end. The local implementation service
must then first bind to the front end following the complete binding procedure as
described in Section 2.2.2.

After an implementation has been selected and the client has loaded the class
archive into its address space, the implementations (i.e., classes and objects) are
instantiated, followed by a preliminary initialization by means of the network address
that was part of the contact address. The client has now set up a connection to the
replica through the permanent store. The store, in turn, activates the replica, after
which the necessary state as contained in the state archive is shipped to the client.

3.3.2 Advanced Binding: Selecting a Store
A client should also be allowed to cache GlobeDocs independently of the object-
centric coherence model offered by that document. In case caching is to be done at
the client only, we can basically follow the approach for binding through a permanent
store. The client need only provide an implementation for locally storing its copy of
the docment’s semantics object.

Making use of a proxy cache, as is common for many client Web sites, is some-
what more intricate. We have adopted the following model. A process, called a cache
manager that is prepared to offer caching facilities registers itself as a cache man-
ager object at the Globe location service. A cache manager object is just a distributed
shared object whose contact address is made only locally available by the location
service. A client process wishing to bind to a GlobeDoc using local caching facili-
ties, simply passes the document’s object handle to the location service, indicating
that it is also prepared to accept contact addresses of local, site-wide cache manager
objects.

When a contact address is returned, the client binds to the object associated with
the contact address, as usual. The contact address indicates whether the client is
binding to a cache manager object, or to the GlobeDoc. In the former case, the client



passes the document’s object handle to the cache manager object. The cache man-
ager, in turn, will bind to the GlobeDoc at one of the document’s contact addresses.

When the cache manager is bound to the GlobeDoc, it inserts one or more local
contact addresses for the document at the location service. The client that originally
initiated the binding process is now instructed to bind to the document at an address
offered by the cache manager, and to unbind from the cache manager object.

Note that after the cache manager is bound to the GlobeDoc, subsequent clients
can bind directly to the document through its local contact address(es) as inserted
into the location service by the cache manager. There is no need to bind to the cache
manager object as before.

4 RELATED WORK

To alleviate scalability problems in the Web, research has mainly concentrated on
traditional caching techniques. Replication has been applied in the form of mirror-
ing popular Web sites. Recently, it has been recognized that more advanced forms
of caching and replication are needed. Wessels (1995) proposes to allow servers to
grant or deny a client permission to cache a resource. Push-caching (Gwertzman and
Seltzer, 1996) allows popular resources to be optimally distributed to other servers
based on knowledge of the resource’s access patterns. In a similar fashion, Baentsch
et al. (1997) propose a replication scheme in which replicas are pushed to a collection
of replication servers, and in which clients locate the nearest server for downloading
a Web page. Harvest caches (Chankhunthod et al., 1995) provide a hierarchically
organized solution, and are currently gaining popularity in the Web. Yet another ap-
proach is to use the facilities of large-scale distributed file systems, such as in the
case of AFS (Spasojevic et al., 1994).

Research has also concentrated on replication schemes for specific classes of Web
resources. For example, the distribution point model (Donnelley, 1995) is tailored
to active replication of relatively static sets of bulk, non real-time data. It is mainly
applicable to magazine-like Web documents such as those that appear as electronic
periodical publications.

Hardly any proposals exist that allow each resource to have its own replication
scheme. In the Bayou system a mobile client can specify coherence requirements
for data that is replicated and distributed across multiple servers (Terry et al., 1994;
Petersen et al., 1996). We have adopted some of the results of the Bayou project in
our own work. In the W3Objects system, Web resources are encapsulated into dis-
tributed objects that can have their own replication scheme (Ingham et al., 1995).
Their model is strongly based on the notion of remote objects, which we argue is
less flexible than a model in which objects can be truly physically distributed. Also,
where we strive for distribution transparency, the developers of the W3Objects sys-
tem aim at a highly visible caching mechanism.

In general, much work is currently being done to incorporate CORBA and simi-
lar distributed object technologies into the Web. It is especially the combination of



Java and CORBA that is receiving much attention. These approaches hardly tackle
the problem of scalability, and do not provide solutions for caching, replication and
consistency. In this respect, a perhaps more interesting development is the proposed
HTTP-ng protocol, the goal of which is to present a new object-based protocol for
the Web. In particular, HTTP-ng will allow clients and servers to specify options for
caching individual Web pages.

A solution that comes close to ours is the work based on fragmented objects (Mak-
pangou et al., 1994). Fragmented objects, like Globe’s distributed shared objects, are
physically distributed across multiple machines, encapsulating their own distribution
policy. However, fragmented objects have not been designed for worldwide scalabil-
ity and do not address caching and replication as we do.

5 FUTURE RESEARCH

We have presented Globe’s distributed shared objects, in the form of GlobeDocs, as
a solution to a number of the Web’s scalability problems. A GlobeDoc is a physically
distributed object encapsulating one or more Web resources. Each document takes
care of its own distribution issues such as caching, replication, consistency, and com-
munication. In addition, our approach provides a flexible and extensible approach for
implementing future Web resources.

To assess our research, we have developed a simple prototype implementation of
a Globe distributed Web service in Java. The main purpose of this prototype was to
obtain feedback on the feasibility of our approach, and also to gain insight in possible
implementations. Currently, we are developing a toolkit in Java that will allow us to
more easily construct the GlobeDocs as described in this paper.

There are still a number of open issues that we need to address. We are investigat-
ing how we can incorporate security into our framework such that security policies
can be attached to individual GlobeDocs in a similar fashion as distribution policies.
Also, more research is needed with respect to different caching and replication poli-
cies, and how policies can be implemented efficiently in a worldwide system. With
respect to Globe-based distributed Web services, we also need support for partition-
ing and distributing state archives, as well as user-oriented tools that replace much
of the manual construction of GlobeDocs.

REFERENCES

Baentsch, M., Baum, L., Molter, G., Rothkugel, S., and Sturm, P. “Enhancing the
Web’s Infrastructure: From Caching to Replication”. IEEE Internet Comput.,
1(2):18–27, Mar. 1997.

Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., and Worrell, K. “A
Hierarchical Internet Object Cache”. Technical Report CU-CS-766-95, De-
partment of Computer Science, University of Colorado – Boulder, Mar. 1995.



Donnelley, J. “WWW Media Distribution via Hopwise Reliable Multicast”.
Comp. Netw. ISDN Syst., 27(6):781–788, 1995.

Gwertzman, J. and Seltzer, M. “The Case for Geographical Push-Caching”. In
Proc. Fifth HOTOS, Orcas Island, WA, May 1996. IEEE.

Ingham, D., Little, M., Caughey, S., and Shrivastava, S. “W3Objects: Bringing
Object-Oriented Technology To The Web”. The Web Journal, (1):89–105,
1995.

Janssen, B. and Spreitzer, M. ILU Reference Manual. Xerox Corporation, May
1996.

Jul, E., Levy, H., Hutchinson, N., and Black, A. “Fine-Grained Mobility in the
Emerald System”. ACM Trans. Comp. Syst., 6(1):109–133, Feb. 1988.

Kermarrec, A., Kuz, I., van Steen, M., and Tanenbaum, A. “A Framework for
Consistent, Replicated Web Objects”. In Proc. 18th Int’l Conf. on Distributed
Computing Systems, pp. 276–284, Amsterdam, The Netherlands, May 1998.
IEEE.

Makpangou, M., Gourhant, Y., Le Narzul, J.-P., and Shapiro, M. “Fragmented
Objects for Distributed Abstractions”. In Casavant, T. and Singhal, M. (eds.),
Readings in Distributed Computing Systems, pp. 170–186. IEEE Computer So-
ciety Press, Los Alamitos, CA., 1994.

Neuman, B. “Scale in Distributed Systems”. In Casavant, T. and Singhal, M.
(eds.), Readings in Distributed Computing Systems, pp. 463–489. IEEE Com-
puter Society Press, Los Alamitos, CA., 1994.

ObjectSpace Inc. Voyager User Guide, July 1997. http://www.objectspace.com/.
OMG. “The Common Object Request Broker: Architecture and Specification,

revision 2.1”. OMG Document 97.09.01, Object Management Group, Aug.
1997.

Petersen, K., Spreitzer, M., Terry, D., and Theimer, M. “Bayou: Replicated
Database Services for World-wide Applications”. In Proc. Seventh SIGOPS
European Workshop, pp. 275–280, Connemara, Ireland, Sept. 1996. ACM.

Radia, S., Madnay, P., and Powell, M. “Persistence in the Spring System”. In Proc.
Third Int’l Workshop on Object Orientation in Operating Systems, Asheville,
North Carolina, Dec. 1993. IEEE.

Spasojevic, M., Bowman, M., and Spector, A. “Using a Wide-Area File System
Within the World-Wide Web”. Comp. Netw. ISDN Syst., 26, 1994.

Tanenbaum, A. Distributed Operating Systems. Prentice Hall, Englewood Cliffs,
N.J., 1995.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M. J., Theimer, M. M., and
Welsh, B. B. “Session Guarantees for Weakly Consistent Replicated Data”. In
Proc. Third Int’l Conf. on Parallel and Distributed Information Systems, pp.
140–149, Austin, TX, Sept. 1994. IEEE.

van Steen, M., Hauck, F., Homburg, P., and Tanenbaum, A. “Locating Objects in
Wide-Area Systems”. IEEE Commun. Mag., 36(1):104–109, Jan. 1998.

Wessels, D. “Intelligent Caching for World-Wide Web Objects”. In Proc. INET
’95, Honolulu, Hawaii, June 1995. Internet Society.



BIOGRAPHY

Maarten van Steen is assistant professor at the Vrije Universiteit in Amsterdam
since 1994. He received an M.Sc. in Applied Mathematics from Twente University
(1983) and a Ph.D. in Computer Science from Leiden University (1988). He has
worked at an industrial research laboratory for several years in the field of parallel
programming environments. His research interests include distributed-software engi-
neering, operating systems, computer networks, and distributed systems. Van Steen
is a member of IEEE Computer Society and ACM.

Andrew S. Tanenbaum has an S.B. from M.I.T. and a Ph.D. from the University
of California at Berkeley. He is currently a Professor of Computer Science at the
Vrije Universiteit in Amsterdam and Dean of the interuniversity computer science
graduate school, ASCI. Prof. Tanenbaum is the principal designer of three operating
systems: TSS-11, Amoeba, and MINIX. He was also the chief designer of the Am-
sterdam Compiler Kit. In addition, Tanenbaum is the author of five books and over
80 refereed papers. He is a Fellow of ACM, a Fellow of IEEE, and a member of the
Royal Dutch Academy of Sciences. In 1994 he was the recipient of the ACM Karl V.
Karlstrom Outstanding Educator Award and in 1997 he won the SIGCSE award for
contributions to computer science.

Ihor Kuz has an M.Sc. in Computer Science (1996) from the Vrije Universiteit in
Amsterdam. He is currently a Ph.D. student at the Delft University of Technology,
doing research in the field of worldwide scalable distributed Web services. His re-
search interests include operating systems, scalable distributed systems, and Web-
based technologies.

Henk J. Sips received his M.Sc. degree in 1976 in electrical engineering and his
Ph.D. in 1984 from Delft University of Technology. Currently, he is Professor in
Parallel and Distributed Systems at Delft University. His research interest include
computer architecture, parallel programming, parallel algorithms, and distributed
systems. He is member of IEEE and ACM.


