
Software Engineering for Scalable Distributed Applications

Maarten van Steen Stefan van der Zijden Henk J. Sips
Vrije Universiteit CAP Gemini Delft University

steen@cs.vu.nl SZijden@inetgate.capgemini.nl sips@cs.tudelft.nl

Abstract
A major problem in the development of distributed appli-
cations is that we cannot assume that the environment in
which the application is to operate will remain the same.
This means that developers must take into account that the
application should be easy to adapt. A requirement that is
often formulated imprecisely is that an application should
be scalable.

We concentrate on scalability as a requirement for dis-
tributed applications, what it actually means, and how it
can be taken into account during system design and im-
plementation. We present a framework in which scala-
bility requirements can be formulated precisely. In addi-
tion, we present an approach by which scalability can be
taken into account during application development. Our
approach consists of an engineering method for distribut-
ing functionality, combined with an object-based implemen-
tation framework for applying scaling techniques such as
replication and caching.

1 Introduction
In the past 20 years, we have seen the integration of comput-
ing and communication facilities into large-scale enterprise-
wide networked environments, capable of supporting large
numbers of users and applications. Large-scale network-
ing has also introduced interoperability problems. Current
environments are highly heterogeneous consisting of dif-
ferent hardware platforms, operating systems, and network
architectures. This, in turn, has led to new developments
in which common middleware solutions are sought that al-
low us to integrate different applications. Examples include
OLE/DCOM, CORBA, and Java RMI.

These developments are now leading to a new genera-
tion of information systems that are inherently distributed
across large networks of computers, and capable of inter-
operating with other systems as in the case of, for example,
federated databases. A major problem in the development
of these distributed information systems, is that we cannot
assume that the environment in which the system is to op-
erate will remain the same over time. This means that de-
velopers must take into account that the system should be

easy to adapt to meet requirements that are unknown during
the development process. At best, such unknown require-
ments are formulated imprecisely. One particularly fuzzy
requirement is that the information system should be scal-
able. Informally, this means that the system should easily
accommodate higher performance levels, because, for ex-
ample, the size or geographical dispersion of the set of users
changes. At the same time, systems should be scalable in
the sense that they can easily be adapted to cooperate with
future applications.

Scalability is the topic of this paper. In particular, we con-
centrate on scalability as a requirement for distributed in-
formation systems, what it actually means, and how it can
be taken into account during system design and implemen-
tation. We advocate that scalability requirements can and
should be formulated precisely.

Our main contribution is that we explicitly and exclu-
sively focus on the role of scalability in the design of dis-
tributed applications. To our knowledge, there are very few
papers having the same objective. In a sense, this paper sup-
plements a treatise on scalability by Neuman [1]. However,
we concentrate on scalability from the perspective of soft-
ware engineering. In particular, rather than providing gen-
eral design guidelines, which have also been discussed in a
report by Schwartz [2], we discuss the architectural support
needed for development of scalable distributed applications
and suggest some solutions.

The paper is organized as follows. In Section 2 we pro-
vide a formal framework for specifying scalability as a sys-
tems requirement. How scalability requirements can be
captured during the development process is discussed in
Section 3 where a methodology is presented for distributed
information design. Scalability support should be provided
during the implementation phases as well, in particular by
means of a scalable implementation framework. Such a
framework is discussed in Section 4. We conclude in Sec-
tion 5.

2 Defining Scalability
To motivate the following discussion, let us consider a com-
mon, informal definition of scalability. An application is



called scalable if it can “accommodate whatever perfor-
mance level or number of users necessary by simply adding
resources to the system [...]. A desirable form of scalability
is a resource cost that is at most linear in some measure of
performance or usage” [3].

In this definition, a distinction is made between users,
performance, and system resources. When taking a closer
look at the definition, many questions come to mind. For
example, is only the number of users interesting from a scal-
ability point of view, or could there be other issues of inter-
est as well? Furthermore, it does not seem reasonable to re-
quire that any performance level should be accommodated.
Also, whether adding more resources is the only solution to
scalability remains to be seen. It is not hard to imagine that
certain applications can never scale without adaptations, no
matter how much resource capacity is available. Finally,
why resource costs should be limited to linear growth is un-
clear. It may well be the case that in certain cases scalability
costs should be limited to sublinear growth, or, on the other
hand, are allowed to grow superlinearly.

In this section, we provide a formal framework for rea-
soning about scalability of distributed applications. We ar-
gue that scalability can be formulated precisely, but will, in
general, depend strongly on the application.

2.1 Basic Model
We consider a distributed application as a number of coop-
erative programs running on multiple machines, sharing a
collection of data. We separate its clients and execution en-
vironment as shown in Figure 1, leading to four surrounding
environments:

The client environment consists of end users and pro-
cesses that make use of the services implemented by the ap-
plication. The client environment itself can be distributed:
users and processes possibly reside at different locations
while being part of the same application.

The development environment consists of application
developers that maintain the distributed application, by re-
moving, updating, and adding new parts. It also comprises
the methods, tools, and techniques for application develop-
ment.

The administration environment consists of system
managers responsible for enabling execution, and monitor-
ing of the application for one or more execution environ-
ments. It also comprises the procedures and tools by which
the process of administration is organized.

The execution environment models the underlying in-
frastructure in which the application is executed. It con-
tains resources, operating systems, networks, and middle-
ware that the application needs to execute.

In the model presented here, growth of the client envi-
ronment is the source for scaling an application; the execu-
tion, administration, and development environment should

Distributed
application

Administration
environment

Development
environment

Client environment

Execution
environment

Figure 1: A model for defining and reasoning about scalability.

offer support that allows the application to scale. An alter-
native approach is to also take into account scalability re-
quirements from the perspective of the administration and
development domains. However, such alternatives are not
further pursued in this paper.

To formally define scalability, we associate a number of
attributes Attr1; : : : ;AttrN with the client environment. Ex-
amples of such attributes are the number of clients in
the environment, the number of requests issued by the
clients, the volume of data passed between the application
and clients, the size of the geographical region in which
clients reside, and the geographical distribution of clients
within a specific region.

An instance of the client environment is represented by
a vector a = ha1; : : : ;aNi of attribute values, with a[i] = ai.
We assume that the values of an attribute are totally ordered.

For example, suppose we are interested in the scalability
of an application only with respect to (1) the number of end
users and (2) the size of the region where those users reside.
We can then represent the client environment by a vector of
length two. We may decide to count users in units of 10 and
to express the size of the region as either SMALL, MEDIUM

or LARGE, so that a specific environment can be represented
as the vector h40;MEDIUMi. Note that laying down scala-
bility requirements implies that we first explicitly have to
choose relevant attributes and their respective range of pos-
sible values.

Furthermore, we associate a performance measure
Perf A with the distributed application A. Performance is ex-
pressed in some numerical performance measure unit. A
low value of the performance measure indicates poor per-
formance. An example is the number of services that are
completed per time unit, also called throughput. We as-
sume that attributes and performance measure are chosen
such that an increase of an attribute value decreases perfor-
mance.

Analogous to the attributes of the client environment,
we model the execution environment as a collection of re-



sources Res1; : : : ;ResM. An instance of the execution envi-
ronment, which represents the available resource capacity,
is expressed as a vector r = hr1; : : : ;rMi. We assume the
performance of an application also depends on the available
resource capacity, and in particular, that an increase of re-
source capacity leads to better performance.

We can thus express the performance of an application
A as a function Perf A(a;r) that is decreasing in a (i.e.,
∆Perf A

∆a � 0) and increasing in r (i.e., ∆Perf A
∆r � 0).

The cost of available resource capacity r is denoted
Cost(r). Costs are expressed in some cost unit. The cost for
realizing performance Perf A(a;r) is denoted CostA(a;r).
Finally, rmin(a) denotes the resource capacity needed to re-
alize Perf A(a;r) at minimal costs, that is, if Perf A(a;r) =
Perf A(a;rmin(a)) then CostA(a;r)� CostA(a;rmin(a)).
2.2 A Formal Definition of Scalability
Now consider a distributed application A that has been ini-
tially designed for a client set aref, that is, aref acts as a ref-
erence point for possible adaptations. Associated with aref

is an assumed available resource capacity rref at minimal
costs, that is, rref = rmin(aref).

Denote by arefhi : ai the vector of attribute values which
has the same values for its elements as aref, except for the
ith component, which has the value a. We can now define
scalability as follows.

Definition. Let γ(a) be a function in attribute values a re-
turning values in the same cost unit as CostA. Fur-
thermore, let δ(a) be a function in a returning values
in the same performance measure unit as Perf A with8a :: δ(a)� 0 and δ(aref) = 0. An application A is scal-
able in attribute Attri for values up to a maximum amax

with respect to γ and δ if the following properties hold:
P1: A can accommodate values aref[i]< a � amax.
P2: 8aref[i]< a � amax9r ::

Perf A(aref;rref)�Perf A(arefhi : ai;r)� δ(arefhi : ai)
P3: 8aref[i]� a � amax ::

CostA(arefhi : ai;rmin(arefhi : ai))� γ(arefhi : ai)
The first property states that the application can actually ac-
commodate a growth of attribute value aref[i]. For example,
let Attri denote the number of users of an application. If
the maximum number of users has been hard coded to 100,
then, by definition, the application’s scalability is limited to
that number. So, setting amax > 100 in the scalability re-
quirements automatically disqualifies the application as be-
ing scalable according to those requirements.

Underlying property P2 is our assumption that increas-
ing the value of attribute Attri from aref[i] to a leads to a
performance degradation. The second property states that
we can increase the available resource capacity in such a
way that this degradation can be compensated, although

some degradation may be acceptable. Degradation toler-
ance is expressed by means of the performance degrada-
tion bound δ.

For example, if we take δ(a) � 0 we are demanding
that performance degradation can be fully compensated by
(only) adding more resources. However, this may be too
rigid in some cases. Suppose we have a client/server appli-
cation initially designed to handle at most 40 clients with-
out noticeable performance degradation. With δ(a)� 0 we
would be forced to add an extra server as soon as the number
of clients becomes 41. However, by accepting some perfor-
mance degradation, expressed by specifying that δ(a) � K
for some K > 0, we could allow up to, say, 50 clients before
adding an extra server to meet our scalability requirements.

The third property (P3) limits the costs that are allowed
to compensate performance degradation. In particular, we
require that there is a reference cost bound γ that limits the
maximal costs for increasing resource capacity. Note that
the costs can be expressed any way that is felt appropriate.
We could take the actual monetary costs, but also, for exam-
ple, costs expressed in terms of storage or processing capac-
ity.

Defining scalability in terms of the cost of resource ca-
pacity is not always practical as these costs are often hard
to measure. This is particularly the case when the execution
environment itself offers interfaces that completely hide the
resources it offers, as is the case with many middleware so-
lutions. In these cases, scalability can be formulated only in
terms of performance degradation. This means that prop-
erty P3 should be ignored, at that scalability requirements
are formulated entirely in terms of the performance degra-
dation bound δ.

2.3 Discussion
An important issue in our framework is the distinction be-
tween extensibility and performance. Often, scalability is
formulated only in terms of performance. In our frame-
work, we explicitly account for the fact that an application
should be able to accommodate certain ranges of attribute
values, like being able to administrate a large number of
users. Extensibility in this sense, is independent from per-
formance, and refers solely to being capable of coping with
certain attribute values in the administration environment.
Note that the developer, or the customer for whom the ap-
plication is being built, is responsible for defining the set of
relevant attributes.

Another important aspect of both definitions are the addi-
tional bounds that limit the increase of costs, and the degra-
dation of performance, respectively. It is up to the customer
to define these bounds. For example, it may be enough
to state that costs for scaling the application by adding re-
sources should be limited to a linear increase. On the other
hand, it may also be the case that costs should remain the



same, but that the application should be able to support
twice as many users at half the performance.

The point to note is that scalability requirements can
be formulated precisely in our framework. The minimum
needed are definitions of the attributes of the client envi-
ronment, a simple performance measure for the application,
and the performance degradation bound δ. If resources are
taken into account, we need the resource cost measure as
well as the reference cost bound γ. Defining these compo-
nents for general applicability does not make much sense as
they strongly depend on the usage and nature of an applica-
tion.

In this sense, our approach is more liberal than the few
alternative attempts at formally defining scalability. To our
knowledge, scalability has been formally defined only in
the field of high-performance computing. In a recent study,
Kuck provides precise definitions of performance scalabil-
ity [4]. Using our terminology, the client environment in
Kuck’s model consists of a single client. The only attribute
that is taken into account is the (data) size of the problem
that the application needs to solve. The execution environ-
ment consists of a high-performance machine, for which
only the processors are considered as resources that affect
scalability. The performance measure is the speed-up that
can be accomplished by increasing the number of proces-
sors. Speed-up is the defacto performance measure in high-
performance computing.

Kuck explicitly gives several values for the reference cost
bound γ. For example, he states that high-performance is
reached only if speed-up exceeds P=2, where P is the num-
ber of processors. An application is then high performance
data-size scalable only for those sizes of the input set for
which the speed-up exceeds P=2. Similar bounds are used
for defining other classes of scalability. The drawback of
Kuck’s definitions is that they deal only with data size and
number of processors, and are difficult to apply to areas
other than parallel computing. Moreover, Kuck hardly mo-
tivates his scalability bounds. This seriously limits their ap-
plicability to other cases.

3 Engineering Methods: AD-DIS
So far, we have merely provided a framework for specify-
ing scalability requirements. We have not said anything on
how we can actually build scalable distributed applications.
We distinguish two issues. First, supplementing existing
methods and tools for developing applications, we propose
a systematic approach toward specifying the distribution of
functionality of an application. Second, we propose to use
a scalable implementation framework that assists a devel-
oper in implementing distribution policies. In this section,
we concentrate on a method for specifying distribution of
functionality. Implementation is discussed in Section 4.

3.1 Distributed-Software Engineering
It has been recognized that the distribution of functions and
data severely affect the overall quality of an information
system and that distribution should be taken into account
early in the development process [5]. Unfortunately, well-
established development methods mostly ignore distribu-
tion aspects and at best consider them during phases of tech-
nical design [6]. A solution to this lack of support is to use
a supplemental development method that deals solely and
explicitly with distribution aspects. Architecture Design for
Distributed Information Systems (AD-DIS) from Cap Gem-
ini is such a method [7].

The goal of AD-DIS is to find an optimal location for
the functional components of an application. The functional
and quality requirements identified during a previous re-
quirements phase are taken as a starting point for locating
components, along with the capabilities and limitations of
the execution environment.

When designing an architecture for distributed applica-
tions, we have to face a number of hard problems. For ex-
ample, there is often much design information to consider.
Also, we generally have to face conflicting requirements,
such as demands for high performance while meeting se-
vere security constraints. Moreover, distribution can take
place with respect to different issues. For example, we can
distribute functions for optimizing manageability, security,
performance, etc.

The process of architecture design can easily become un-
controllable and lengthy, so that justifying the final result
may eventually turn out to be difficult. To alleviate prob-
lems, AD-DIS uses multiple abstraction levels and scenar-
ios.

Multiple abstraction levels are deployed to handle the
large volume of design information. The following three
levels are distinguished in AD-DIS:

On the conceptual level all relevant design information
is collected and modeled from a topographical point of
view. Important issues concern quality requirements such
as availability, performance, and actuality of data. Also, to-
pographical issues are taken into account such as where spe-
cific functions are needed, or where they should never be
made available, etc. The result is a conceptual distribution
design.

On the logical level, developers decompose functions
into physically distributed units. The result is a set of
nondistributable components, called a logical distribution
design. The data and functions encapsulated by a compo-
nent will always be mapped to the same location, although
replication is still possible. Based on this decomposition, a
number of distribution schemes are worked out, but discard-
ing the capabilities and limitations of the execution environ-
ment. In other words, ideal distribution alternatives are con-
structed, analyzed, and compared.



Finally, on the physical level, the logical distribution de-
sign is mapped onto an execution environment, taking ca-
pabilities and limitations of the latter into account. Typical
decisions that are made at this level are whether or not to
replicate a component, or where to physically locate com-
ponents. The result is coined a physical distribution design.

In addition, AD-DIS uses different scenarios at each level
to perform what-if analyses. Within a scenario, a developer
concentrates on optimizing distribution for the sake of only
one or two requirements. For example, the logical design
can be optimized for performance or availability. Within
another scenario, a developer would concentrate on man-
ageability of the distributed information system. By com-
paring several scenarios, we obtain better insight concern-
ing the effects of distributing the components identified on
the logical level. Eventually, a compromise may have to be
sought.

3.2 Designing for Scalability
The AD-DIS method can be used to take scalability into ac-
count in application development. Consider the situation in
Figure 2. A distributed application has a cost-based scal-
ability requirement as illustrated in the graph. Two points
are chosen as bounds for the scaling bandwidth: aref and
amax. For both points a distribution design will be made us-
ing AD-DIS.

Based on the client environment as characterized by aref,
a conceptual distribution design C(aref) is made. Taking this
design as starting point, different scenarios are considered
to derive one or more logical designs. Examples of such
scenarios are:

Scenario 1: A scenario in which the components of the ap-
plication are distributed in such a way that performance is
optimized. In our example, the result is the logical distribu-
tion design L1(aref).
Scenario 2: A scenario in which the components are dis-
tributed for optimal security, resulting in the logical distri-
bution design L2(aref).
The choices made on the logical level deal only with the lo-
cality of data and functional components of the application.
A typical decision on this level is to choose for central or
distributed data management. In our example, the results of
the two scenarios are compared for compliance with all re-
quirements. One of the two logical designs is chosen as the
basis for the physical distribution designs.

We take logical design L2(aref) as the basis for develop-
ing a number of physical distribution designs. Again, sev-
eral scenarios are examined. The possible scenarios depend
on the available mechanisms in the execution environment.
For example, to implement central data management, three
scenarios could be investigated:

Scenario 2.1: access to a physical central database, result-
ing in physical distribution design P21(aref)
Scenario 2.2: a central database with local caching, lead-
ing to P22(aref)
Scenario 2.3: a scheme with master-slave replication to al-
low local database copies, leading to P23(aref)
The chosen physical distribution design prescribes
(1) where components are to be located, and (2) which
mechanisms are to be used for distribution support. Note
that the actual development of the components can be
supported by a separate, perhaps traditional method that
may now ignore distribution issues.

To account for scalability requirements, we follow ex-
actly the same development process, but now taking the
client environment characterized by amax as the starting
point. In our example, this eventually leads to the physical
distribution design P22(amax) which is different from the
design for aref. In particular, this means that to account for
scalability, measures will have to be taken to eventually al-
low a transition from a centralized database solution, as pre-
scribed by P21, to one with caching facilities, as prescribed
by P22.

At this point, for both end points of the scaling bandwidth
(i.e., aref and amax) a physical distribution design has been
made that ensures compliance with the original systems re-
quirements, and within acceptable costs. In practice, addi-
tional points on the scale axis may have to be evaluated as
well to ensure a transition from aref to amax.

By using AD-DIS the scalability of the application is
evaluated while taking into account the scalability support
of the execution environment. The scalability of the appli-
cation is dealt with mostly at the logical level where distri-
bution policies are actually chosen. These distribution poli-
cies are reflected in the design of the application.

The scalability support of the execution environment is
primarily evaluated on the physical level. An execution en-
vironment providing lots of support for scalability offers
several mechanisms to choose from. The differences be-
tween mechanisms should preferably be transparent to the
application, as this will make scaling easier.

4 An Implementation Framework
AD-DIS supports a developer in distributing the function-
ality of an application, taking one or several scenario’s into
account. The result of applying AD-DIS are one or more
distribution policies, which describe precisely which func-
tionality should be distributed, and how and where that dis-
tribution should take place. However, the implementation
of a distribution policy is still left open. For example, it
may have been decided to allow replication of a database
as long as the replicas adhere to strong consistency rules. In
other words, clients should never be aware that the database



Cost

a ref a max

Scale

Conceptual design

Logical design

Physical designP21(a ref) P22(a ref) P23(a ref)

L1(a ref) L2(a ref)

C(a ref)

P21(a max) P22(a max) P23(a max)

L1(a max) L2(a max)

C(a max)

Client environment
requirements

(a    )ref

Capabilities and limitations of execution environment

Client environment
requirements

(a     )max

γ(a)

Actual costs

Figure 2: Designing for scalability using AD-DIS.

is physically distributed and replicated across several lo-
cations. However, the coherence protocol that implements
such a distribution policy has not yet been defined, and in-
deed, several alternative implementations may exist.

4.1 Extensibility and Performance
Designing and implementing distribution policies in the
face of scalability introduces several new aspects that have
not yet been considered in the development process. Con-
sider the following, more apparent ones.

Interoperability and heterogeneity. Modern applica-
tions should expect to be part of a large, enterprise-wide in-
formation system in which they have to interoperate with
many other components. Scaling these information systems
can be done only if their components are designed in such
a way that they can indeed easily interoperate, but also be
easily replaced and extended. One particular consequence
is that we need to clearly separate interfaces from their im-
plementation. We advocate an interface-based design ap-
proach by which a component is fully described by the ser-
vices and interfaces it provides, as well as those it needs.
The latter is also necessary to support different execution
environments. By having the application specify or imple-
ment the same interfaces to the underlying platforms, porta-
bility, and thus extensibility is better supported.

Multiple administrative domains. Building large-

scale, possibly wide-area applications implies that we may
need to cope with multiple administrative domains. This
places additional requirements on the management and se-
curity of an application.

First, it is necessary to integrate management support into
the application. Otherwise, administrative domains will
need management services that comprise knowledge con-
cerning all applications they have to manage. With vast
numbers of different applications, which may span multiple
domains, such an approach is hard to maintain.

Second, security poses additional problems. On the one
hand, parts of an application that reside in a specific admin-
istrative domain should comply to the security policies of
that domain. On the other hand, an application should also
be able to protect itself instead of having to rely on a do-
main’s security policy. Like management, the consequence
is that security should be partly integrated into an applica-
tion.

Performance Issues. We would not be so much con-
cerned about scalability if it did not affect the efficiency of
systems. Unfortunately, keeping up performance is more
easily said than done. In particular, we must anticipate that
scaling techniques such as caching, replication, distribu-
tion, and parallelism need to be applied for mere perfor-
mance reasons. However, it is important not to mix the im-
plementation of scaling techniques with the implementation



of functionality. In fact, we claim that virtually all distribu-
tion issues can and should be separated from functionality.

Separation is important as we may need to switch to a dif-
ferent scaling technique when higher performance demands
are required. Obviously, such demands should not affect the
functionality of an application, and in particular its present
implementation.

4.2 Distributed Shared Objects
A possible solution to enable scalable distributed applica-
tions is a wide-area distributed system called Globe [8].
Fundamental to the Globe system are distributed shared
objects. In terms of AD-DIS, a distributed shared object
models a nondistributable component as constructed in the
logical distribution design. In other words, we assume the
object’s state cannot be further partitioned and subsequently
distributed across multiple locations. However, it may be
possible to replicate or cache that state.

Our objects differ from other distributed objects, includ-
ing those used in popular systems like DCOM and CORBA,
in two important ways. First, the state of a distributed
shared object can be copied across multiple machines. Sec-
ond, in contrast to existing systems, a distributed shared
object fully encapsulates its own distribution policy. This
means that all implementation aspects concerning, for ex-
ample, the replication and migration of state, are completely
hidden from clients.

In order for a client to invoke an object’s method, it must
first bind to that object. Binding results in an interface be-
longing to the object being placed in the client’s address
space, along with an implementation of that interface. Such
an implementation is called a local object. This model is il-
lustrated in Figure 3.

A local object resides in a single address space and com-
municates with local objects in other address spaces. Each
local object is composed of several subobjects, and is itself
again fully self-contained as also shown in Figure 3. A min-
imal composition consists of the following four subobjects.

Semantics subobject. This is a local object that imple-
ments (part of) the actual semantics of the distributed object.
As such, it encapsulates the functionality of the distributed
object. The semantics object consists of user-defined primi-
tive objects written in programming languages such as Java
or C++. These primitive objects can be developed indepen-
dent of any distribution or scalability issues.

Communication subobject. This is generally a system-
provided subobject. It is responsible for handling commu-
nication between parts of the distributed object that reside in
different address spaces. Depending on what is needed from
the other components, a communication subobject may of-
fer primitives for point–to–point communication, multicast
facilities, or both.

Communication
object

Replication
object

Semantics
object

Control
object

Communication
object

Replication
object

User
object

Entry
object

Network

Local
object

Address
space

Distributed
object

A1 A2

A3 A4

A5

Figure 3: Example of an object distributed across four address
spaces.

Replication subobject. The global state of the dis-
tributed object is made up of the state of its various seman-
tics subobjects. Semantics subobjects may be replicated
for reasons of fault tolerance or performance. In particular,
the replication subobject is responsible for keeping these
replicas consistent according to some (per-object) coher-
ence strategy. Different distributed objects may have dif-
ferent replication subobjects, using different replication al-
gorithms. An important observation is that the replication
subobject has a standard interface. However, implementa-
tions of that interface will generally differ between repli-
cation subobjects. In a sense, this subobject behaves as a
meta-level object comparable to techniques applied in re-
flective object-oriented programming.

Control subobject. The control subobject takes care of
invocations from client processes, and controls the inter-
action between the semantics subobject and the replication
subobject. This subobject is needed to bridge the gap be-
tween the user-defined interfaces of the semantics subob-
ject, and the standard interfaces of the replication subobject.

A key role, of course, is reserved for the replication sub-
object. An important observation is that communication
and replication subobjects are unaware of the methods and
state of the semantics subobject. Instead, both the com-



munication subobject and the replication subobject operate
only on invocation messages in which method identifiers
and parameters have been encoded. This independence al-
lows us to define standard interfaces for all replication sub-
objects and communication subobjects.

4.3 Globe and Scalability Problems
Obviously, distributed shared objects themselves do not
provide scalable solutions, but instead, offer a scalable im-
plementation framework in which such solutions can be in-
corporated. Current object-based frameworks or architec-
tures do not provide this support. First, current distributed
object models follow a traditional client/server approach in
which the state of an object is confined to a single location
at a time. Clients are offered only proxy implementations
of an object’s interface, which effectively implement a re-
mote method invocation (RMI) mechanism. This is the only
mechanism provided to access an object. Scalability tech-
niques such as (transparent) caching and replication of state
require more than just RMI.

Second, if distribution services are provided at all, they
are specified external to objects. Consequently, a distribu-
tion service can apply only the same policy to all objects it
manages. From a scalability point of view, such a one-size-
fits-all approach is deemed to fail, for the simple reason that
the effectiveness of a scaling or distribution policy is highly
dependent on object-level semantics. Also, specifying ser-
vices as separate entities still forces us to construct scalable
solutions for those services. In other words, hardly any sup-
port is offered for developing scalable solutions.

Globe is different in this respect. The most important ob-
servation is that we recognize that solutions to scaling ob-
jects depend on the functionality of that object. For this rea-
son, we advocate that solutions should be entirely encapsu-
lated by an object. On the other hand, it is possible to sepa-
rate the implementation of distribution policies from object-
level semantics.

5 Conclusions
In this paper, we have argued that scalability requirements
can be formulated precisely by providing a formal frame-
work for expressing such requirements. However, more is
needed to actually build scalable applications. First, we ad-
vocate that engineering methods such as AD-DIS should be
used to assist a developer in deciding where and how data
and functionality should be distributed. The engineering
method must also provide a separation of concern regarding
dealing with distribution policies in the application and dis-
tribution mechanisms in the execution environment. Sec-
ond, we need an implementation framework in which func-
tionality is separated from distribution issues, but which al-
lows scalable solutions to be easily incorporated. Whether

our formal framework, AD-DIS, and Globe are also gener-
ally applicable solutions towards building scalable applica-
tions, can only be demonstrated in practice. AD-DIS and
Globe have been applied to practical situations, but more
work is still needed.

In particular, we need more practical experience to actu-
ally see whether AD-DIS and Globe adequately support de-
veloping scalable solutions. Also, as it stands now, the three
parts of our framework (requirements specification, design,
and implementation) have not been integrated into a single
methodology. Finally, our framework would improve if we
could add design and implementation guidelines that could
be derived from scalability requirements. Such guidelines
are presently not available.

A major problem with building scalable solutions is that
they are highly dependent on the application. Constructing
general-purpose scalable solutions for replicating and dis-
tributing data and functionality, does not make much sense
to our opinion. Consequently, reasoning about scalability
in general becomes difficult. It is perhaps for this reason
that so few papers exist on scalability. However, the ap-
proach discussed in this paper demonstrates that we can at
least follow a more systematic and structured approach to-
wards software engineering for scalable distributed applica-
tions.

References
[1] B. Neuman. “Scale in Distributed Systems.” In T. Casa-

vant and M. Singhal, (eds.), Readings in Distributed
Computing Systems, pp. 463–489. IEEE Computer So-
ciety Press, Los Alamitos, CA., 1994.

[2] M. Schwartz and P. Tsirigotis. “Techniques for Support-
ing Wide Area Distributed Applications.” Rep. CU-CS-
519-91, Dept. Comp. Sc., Univ. Colorado, Feb. 1991.

[3] D. G. Messerschmidt. “The Convergence of Telecom-
munications and Computing: What are the Implications
Today?.” Proc. IEEE, 84(8):1167–1186, Aug. 1996.

[4] D. J. Kuck. High Performance Computing. Oxford
University Press, New York, NY, 1996.

[5] A. Aue and M. Breu. “Distributed Information Sys-
tems: An Advanced Methodology.” IEEE Trans. Softw.
Eng., 20(8):594–605, Aug. 1994.

[6] R. Wieringa. “A Survey of Structured and Object-
Oriented Software Specification Methods and Tech-
niques.” ACM Comput. Surv., 1998. To appear.

[7] S. van der Zijden, J. van ’t Wout, and J. Schekkerman.
“Architecture Design for Distributed Information Sys-
tems.” Informatie, 38(10):62–68, Oct. 1996.

[8] M. van Steen, P. Homburg, and A. Tanenbaum. “The
Architectural Design of Globe: A Wide-Area Dis-
tributed System.” Rep. IR-422, Vrije Universiteit,
Dept. Math. & Comp. Sc., Mar. 1997.


