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Abstract

A non-formal motivation and description is given of ADL-
d, a graphical design technique for parallel and distributed
software. ADL-d allows a developer to construct an appli-
cation in terms of communicating processes. The technique
distinguishes itself from others by its rigid orthogonal ap-
proach to communication modeling, which is advantageous
in many areas. Without being committed to one particular
design method, ADL-d as a technique can be used from the
early phases of application design through phases that con-
centrate on algorithmic design, and final implementation on
some target platform. In this paper, we discuss and motivate
all ADL-d components, including recently incorporated fea-
tures such as support for connection-oriented communica-
tion, and support for modeling dynamically changing com-
munication structures.

1 Introduction

Developers of parallel and distributed applications often
face difficulties with respect to synchronization, distribu-
tion and replication. It is generally recognized that these
problems should be attacked in the early development
stages of logical and technical design. Consequently, classi-
cal support tools such as monitors and debuggers, and com-
munication libraries are of little help, since these are gener-
ally applied much later. Instead, we require specific design
support, in the form of methods and techniques, which, ide-
ally, takes an application developer from early design all the
way to implementation in a seamless way.

ADL-d is a graphical design technique for the develop-
ment of parallel and distributed software, based on a model
of communicating processes. ADL-d’s primary focus is on
communication modeling, exemplified by a set of highly or-
thogonal communication concepts, jointly covering a wide
range of patterns for communication. The orthogonaliza-
tion of communication modeling can be seen as ADL-d’s

primary contribution to the field, and we believe that other
recognized techniques such as SDL [1] could benefit from
this.

Using a diagram technique called structure models, a de-
signer models an application in terms of a communication
graph of processes, hierarchically organized using simple
process decomposition features. Through a second diagram
technique called behavior models, the sequential behavior
of each process is modeled in total isolation from its en-
vironment. Here, focus is again on communicative behav-
ior, postponing implementation details to later development
stages. The combination of both models gives a complete
picture of the application’s communication aspects.

ADL-d’s solid, formal definition makes ADL-d designs
suitable for automated target code generation. More specif-
ically, an ADL-d design can be automatically translated into
skeleton code which contains all necessary communication
code. Only the details of strictly sequential code need to be
explicitly coded.

Another feature of ADL-d is its ability to model dynami-
cally changing communication structures in an application,
giving it the possibility to adapt to changing demands in
terms of speed, workload and robustness, or new opportu-
nities in available resources during runtime.

2 Using ADL-d

Being a general technique for modeling communication
structures, ADL-d is not necessarily committed to one
particular design method. It goes well with traditional
functional decomposition, but also with object-identifying
strategies. Also, its simple decomposition techniques make
it suitable for bottom-up as well as top-down approaches.
For example, when using a top-down design method, a de-
veloper starts with a set of process objects which are the
result of a requirements analysis (according to some un-
specified strategy). From then on, ADL-d’s structuring tech-
nique is used in the decomposition of these processes, build-



ing a structure design with fully specified communication
semantics. Also, parent-child relations are established be-
tween processes. The primary notion during this stage is es-
tablishing a maximal degree of process decoupling. Here,
ADL-d’s communication model of channels, which explic-
itly model the medium between communication endpoints
(process gates), is beneficial. Naturally, the refinement
of communication structure may take several iterations to
yield the desired result.

When a designer chooses not to decompose a process
any further, the next refinement step is specifying its be-
havioral semantics, initially only communication, and later
also internal computations. ADL-d provides a special type
of state-transition diagrams (STDs) for this, which separate
communications from (internal) computations. These STDs
also include actions for initiating dynamic creation of pro-
cess instances.

After all this, the specification of the process’ behavior is
complete and target code for the process can be automati-
cally generated. All individual process codes together with
the structure design suffice, in principle, to automatically
generate target code for a working parallel, distributed pro-
gram.

3 The ADL-d Design Technique

3.1 Basic Components: Process, Channel,
Gate

An ADL-d process is a prototype for a self-contained unit of
functionality (much like an object class in object-oriented
languages). A process’ communication interface consists
of gates, through which it sends or receives data. These, in
turn, are attached to channels for data transfer between pro-
cesses. The example structure diagram in Figure 1(a) mod-
els the pattern of an application Appl with a Contractor com-
municating data to Worker processes to perform some job
and return the result. To that end, a Contractor’s output gate
c out is attached to a channel Chan cw, in turn attached to a
Worker’s input gate w in. Similarly, there is a channel from
the Workers to the Contractor. The integer annotation below
Worker is the replication factor (the default value is one). In
Figure 1(b) we see its effect: in an instance of Appl (Appl[1]),
we will initially encounter one Contractor instance and three
Worker instances. Its channels are instantiated only once.

Channels and gates separate independent communication
concepts. Gates take care of the behavior part, which con-
cerns blocking. To this end, each gate has a timer which
is set by its owner on activation, indicating the time that
the owner is willing to block for communication. Conse-
quently, a communicating process now has a simple view
on communication through a gate: either it succeeds within
the specified time, or it fails.
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Figure 1: (a) example structure diagram; (b) Instance struc-
ture

Channels provide for the transfer of data between acti-
vated output and input gates. By attaching a gate to a chan-
nel, we indicate that it can communicate over that channel.
A channel in complex process P super is represented by a
circle, and annotated with its buffer capacity, its distribution
semantics, its receiver synchronization semantics, and the
datatype of the messages it transports, in that order. These
are all independent communication aspects.

Data Typing The data type annotation contains the name
of a data type. The default data type is token, which is used
for mere signaling purposes. In Figure 1(a), we see that
Chan cw transports integers.

Buffer Capacity If a channel has zero buffer capacity,
communication can take place only if there is a sender and
sufficiently many receivers active on it to let communi-
cation proceed. The term used for these channels is syn-
chronous. If a channel has buffering capacity, communi-
cation for output gates can succeed if the buffer is not full,
and for input gates if the buffer is not empty. With this,
we model asynchronous communication. In Figure 1, both
Chan cw and Chan wc are synchronous.

Distribution Semantics To specify how a channel dis-
tributes messages, we provide it with two parameters min
and max, indicating the minimum and maximum number of
receivers to which the message should be delivered. Both



numbers can be specified absolutely or as a percentage of
the total number of potential receivers. For example, min=
max = 1 means that communication of a message is com-
pleted if and only if it could be transferred to one input gate
(unicast). Likewise, min = 1 and max = 100% requires
transmission to at least one input gate (a form of multicast).
A channel with min = max = 100% requires transmission
to ‘all’ attached input gates (broadcast). In Figure 1(a), both
Chan cw as Chan wc are unicast channels.

Receiver Synchronization Semantics The last channel
parameter is stride. If there is a message m available
on a channel c, which can still be received by stride re-
ceivers (remember the max parameter), and if there are
stride opened input gates on c, which have not yet received
m, m should be transferred to all of them at the same time.
Like min and max, stride can be given in absolute and rela-
tive values.

Remarks ADL-d channels are nondeterministic in the
sense that no assumptions can be made by a designer about
the order in which input or output gates are served that are
active at any particular moment.

Also, all channels are order preserving: all input gates at-
tached to a channel receive messages in the same order. Fi-
nally, an ADL-d channel delivers messages in the order of
acceptance. Hence, an ADL-d channel acts as a queue, and
multicasting is totally ordered.

3.2 Process Decomposition

For hierarchical development, ADL-d includes a process de-
composition technique. Decomposition stops with the spec-
ification of the dynamic behavior of the lowest level pro-
cesses. When a process is decomposed, its interface, i.e. its
set of gates, is left unaffected. In other words, decomposi-
tion proceeds independently of other parts of the design.

Figure 2 illustrates how the Worker process from Fig-
ure 1 is decomposed into one Analyzer and one Calcula-
tor process, communicating over two channels Chan ac and
Chan ca. Furthermore, gate a in 1 of Analyzer is associated
with gate w in of the original Worker process. This means
that any data that was originally sent through gate w in, is
now sent through gate a in 1. Likewise, gate a out 1 has
been associated with gate w out.

3.3 Behavior Modeling

ADL-d uses separate state-transition diagrams to model the
sequential behavior of nondecomposed (simple) processes.
Each instance of a process prototype behaves according to
the STD of that prototype. In STDs, emphasis is put on com-
municative behavior by means of communication states,
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which correspond directly to one or more of the process’
gates. Strictly sequential behavior is aggregated into com-
putation states.

Figure 3 contains the STD of the Contractor process.
From its initial state (single ellipsis), it enters a computa-
tion state generate work (rectangular box). Then it simul-
taneously opens gates c out and c in in a so-called paral-
lel blocking state. When an event occurs on either of the
gates (timeout or success), this state is left. The Contrac-
tor then tests gate c in in a test state (rounded box). If com-
munication succeeded for c in, the solid transition fires to
processing the received input and testing c out. Otherwise,
the dashed transition fires to immediately testing c out. If
the generated work was not sent yet (c out failed), the fail-
ure transition fires to a new communication attempt (dashed
line). Otherwise, new work is generated. Notice that the
timer values for the communication attempts in this exam-
ple are set to infinity, implying that execution simply blocks
until communication over at least one gate has succeeded.

3.4 High-Level Communication

Connection-oriented communication is becoming increas-
ingly important in distributed computing: client-server
computing and data streams can be naturally modeled as
short and long-lived connections, respectively, between in-
dividual processes. Since the basic communication chan-
nels of ADL-d offer only unidirectional message trans-
fer/distribution on a per-message basis, ADL-d requires ad-
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ditional modeling notions to capture these connections,
which it provides in the form of connection channels and
gates.

ADL-d considers connections special cases of group
communication: among a number of potential participants
in communication, a group is formed, whose members can
subsequently engage in communication. With client-server
communication for example, we start with a number of
potential clients and servers, among which groups of two
members (one client and one server) are established for ex-
clusive interaction. Also, ADL-d considers group establish-
ment a side effect of communication. The initiator, which
is also the first group member, sends a message, and each
participant that receives it becomes another group member.
These two observations form the basis for connection mod-
eling.

Representation A connection channel is an aggregation
of basic ADL-d channels, denoted as subchannels. The three
possible subchannel types are: connection establishment,
disconnection, and regular data channels (which we have
covered above). In Figure 4, we remodel the communica-
tion between a Contractor and a Worker to include a con-
nection channel C, represented by a rounded box with sub-
channels, at least one of which is a connection establishment
channel (ce-channel). All subchannels have the usual five
parameters (we show only the ones of the connection es-
tablishment channel), whereas the connection channel as a
whole has a capacity, indicating the maximum number of
connections that can be supported at any given time. Pro-
cesses are attached to connection channels through connec-
tion gates, which are aggregations of regular communica-
tion gates.

Semantics The establishment of a connection in ADL-d is
based on the dynamic creation of subchannel instances that
become dedicated to a group of gates. Because of space lim-
itations, we illustrate connection semantics through a sim-
ple example.

If the design is as in Figure 4, then the initial instance
structure is as in Figure 5(a), with only the ce-channel in-
stantiated. If the Contractor sends a message over the ce-

channel, received by Worker[2], then, as a side effect, the
other subchannels of C are instantiated, and some new at-
tachments and detachments are made, as illustrated in Fig-
ure 5(b), making the Contractor and Worker[2] the exclusive
users of the subchannel instances. From then on until dis-
connection (see below), they are ‘connected’.

Disconnection is triggered by communication over a dis-
connection subchannel. Through a successful send by the
Contractor over the disconnection subchannel, it becomes
reattached to the ce-channel (for making new connections)
and detached from the others. If subsequently the Worker
receives the disconnection message, the situation of Fig-
ure 5(a) is restored.

(a)

(b)

w_con

w_conc_con

w_con

c_con w_con

w_con

w_con

Worker
[2]

[1]
Worker

Worker
[3]

Worker
[1]

cd

ce

ce

[3]
Worker

[2]
Worker

Appl[1]

tor[1]
Contrac-

Appl[1]

tor[1]
Contrac-
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Remarks A couple of remarks complete the discussion
on connection channels. First, after one of the parties in a
connection disconnects, the other party is still attached to
the data-channel from the connection. This can be useful if,
for example, we want all the data in its buffer to be trans-
ferred before (passive) disconnection.

Second, the entire scheme of connections and passive and
active disconnections is very much reminiscent of the way
TCP connections are set up and terminated. This gives us
confidence in the efficiency of possible implementations of
connections on parallel, distributed systems. Furthermore,
RFC1379 proposes a TCP based protocol specially for short-
lived request-response connections. These could also be
used for implementation.

Third, modeling connection establishment as a side effect
of normal communication allows for many different group
patterns. For example, giving a connection establishment
channel a stride of two always gives us an even number of



additional group members (other than the initiator), which
can be useful if, for example, we want every member to
have another member as backup.

Finally, the connection establishment channel and the
disconnection channel both transport normal messages.
This means that a short-lived connection between two par-
ties can be modeled using a connection channel with only a
connection establishment and a disconnection subchannel.

Behavior Modeling Aspects A major advantage of mod-
eling connections the way we described above, is that no
additional notations or semantics are needed in the behav-
ior models of processes involved in such communication.
Since the subgates of connection gates are basic ADL-d
gates, we can use basic ADL-d blocking and test states to
use them.

4 Dynamic Creation and Replication

An application is generally much more dynamic than re-
flected by its design. In particular, processes are dynami-
cally created and destroyed, and likewise, communications
are dynamically set up and broken down again. In ADL-d,
we have chosen for an approach to dynamic creation that
renders a clear view on (1) parent-child relations between
processes, (2) communication graph evolvement, and (3)
process behavior aspects of dynamic creation. On creation
of a (complex) process instance, an instantiation of its entire
internal structure is recursively created. By default, gates to
the outside are then attached to channels exactly conform
the modeled structure.

A runtime creation is triggered by a process instance,
communicating over an output gate that is attached to a
creation channel. The channel, which is associated with
a (complex) process prototype, will then attempt to create
new instances of this prototype, as many as its num pa-
rameter specifies. Success or failure of this attempt deter-
mines success or failure of the communication over the out-
put gate. Consequently, sending a creation message looks to
the sender just like a regular communication attempt.

In Figure 6(a), we remodel the communication structure
among a Contractor and its Workers to include a creation
channel Create with num value three. Also, we set the repli-
cation factor of Worker to zero. This means, that at appli-
cation startup, no Worker instance is active (Figure 6(b)).
After communication by a Contractor process over Create,
three Worker instances are created, rendering the old struc-
ture of Figure 1(b).

The standard attachment algorithm for gates of new in-
stances, such as illustrated in Figure 6, does not allow for the
modeling of dynamic creation of structures such as pipes,
trees and grids. For this reason, we have extended ADL-d
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Figure 6: (a) ADL-d creation channel; (b) Situation imme-
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with a small Prolog-like construction language, wit instruc-
tions for, for example, the creation of a process instance, and
the attachment of a gate to a channel. A designer can asso-
ciate a program in this language with a creation channel in
order to override the default. Again, space limitations pro-
hibit a full description of the construction language.

5 Implementation

ADL-d’s orthogonal design and formal basis ([2]) allow for
easy automated code generation, as was already exempli-
fied by earlier ADL versions. We have recently finished a
small, but fairly complete runtime system (RTS), written in
C++ for a cluster of workstations. It includes object classes
for every ADL-d concept, which can be dynamically instan-
tiated and attached to each other. Communication is imple-
mented using fairly low-level communication primitives to
gain efficiency. The dynamic construction module offers a
Prolog interface, and communicates to the rest of the RTS

through messages.
At present, most channel implementations are central-

ized, but in [3] we have shown that decentralization is fea-
sible. Also, we are investigating optimization strategies.
Translation of ADL-d designs to skeleton code that inter-
faces to the RTS has shown to be almost trivial.

6 Related Work

Any design technique should provide a clear and unambigu-
ous view on the structure and dynamics of the final program.
For parallel and distributed programs, the two basic com-
ponents of a model are its unit of execution and its com-
munication model. As for the first, practice shows that the



unit of sequential execution is almost invariably chosen to
that of a process, and that parallelism is exploited by having
several processes run simultaneously. As for the commu-
nication model, basically there are two paradigms: shared
data and message passing. The shared data approach has
proven to be relatively easy to work with. Unfortunately,
implementing the model on distributed-memory systems is
not easy. Despite much research in this area [4], it seems
that efficiency can only be achieved if we relax the memory
coherence model as, for example, in TreadMarks [5].

The advantage of message passing is that it is directly
supported by distributed-memory platforms such as net-
worked workstations. However, a remaining drawback is
the low level of abstraction of the message-passing model,
requiring more effort from program developers. Problems
seem to be alleviated if we use an object-based model,
as objects naturally hide message-passing communication
through method invocation. This alternative has been advo-
cated for long by language designers, but how to actually in-
corporate parallelism and distribution into an object-based
language is still a subject of much debate. For one, it can
be argued that the synchronous method invocation reduces
the degree of parallelism. But perhaps more important, is
that traditional method invocation, being on the level of in-
stances, may easily lead to an undesirably high degree of
coupling between the application’s components, and obfus-
cate its structure (see also [6]). Nevertheless, the feasibil-
ity of the approach has been demonstrated, for example, by
Orca [7].

A model that allows for dynamic binding, such as ad-
vocated in the ODP standard ([8]), solves the problem of
object coupling. The proposed strategy is to use an active
binding object to bind objects that are ready to communi-
cate, which allows object behavior to be modeled without
any structural dependencies. In essence, ADL-d offers an
abstraction of active binders in the form of channels, which
become the carriers of most communication semantics.

In line with our approach to communication are the mod-
els used by some other design techniques, most notably SDL

[1] and Darwin/Regis [9]. ADL-d distinguishes itself from
the others by its rigid orthogonal approach, which is advan-
tageous to many aspects, such as the modeling of dynamic
creation, connection-orientedcommunication, and dynamic
behavior.

7 Conclusion

In the complex design space of parallel and distributed soft-
ware, three areas of major importance are communication
structure, component behavior and structure dynamics. For
a technique to significantly contribute to the development
process, we advocate that it should provide support in all
three areas at least to a level where all the specific problems

of parallel and distributed software are solved. Further-
more, we advocate that, through separate techniques and
notations, it should explicitly recognize the orthogonality
of these three areas, such that they can be conquered sep-
arately. ADL-d has these characteristics, while maintaining
a concise set of easy-to-use notations. Also, its communica-
tion model is devised to achieve versatility in the sense that
ADL-d can be used in a broad spectrum of design methods.
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