
Algorithmic Design of the Globe
Wide-Area Location Service

MAARTEN VAN STEEN, FRANZ J. HAUCK, GERCO BALLINTIJN AND

ANDREW S. TANENBAUM

Department Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV,
Amsterdam, The Netherlands

Email: steen@cs.vu.nl

We describe the algorithmic design of a worldwide location service for distributed objects. A
distributed object can reside at multiple locations at the same time, and offers a set of addresses
to allow client processes to contact it. Objects may be highly mobile like, for example, software
agents or Web applets. The proposed location service supports regular updates of an object’s set
of contact addresses, as well as efficient look-up operations. Our design is based on a worldwide
distributed search tree in which addresses are stored at different levels, depending on the migration
pattern of the object. By exploiting an object’s relative stability with respect to a region, combined

with the use of pointer caches, look-up operations can be made highly efficient.

Received December 11, 1997; revised August 14, 1998

1. INTRODUCTION

As the Internet continues to grow exponentially, the problem
of locating people, services, data, software and machines
is becoming more severe. To compound the problem,
increasingly many users are no longer tied to a single,
fixed access point, but instead are using mobile hardware
such as telephones, notebook computers and personal digital
assistants. Applications must therefore take into account that
a user will have to be located first in order to deliver any
messages [1]. Likewise, the mobile user will possibly also
have to find local, nonmobile resources at the location he or
she is currently residing (e.g., a local laser printer) [2].

Mobile computing, which is generally tied to users
migrating between different locations, is one aspect of
mobility in the Internet. Another aspect is formed by
mobile computations, by which software and data move
within a computer network instead of users. For example,
to support ubiquitous computing, it will be necessary to
move a user’s personal environment from one location to
another [3]. Another example of software mobility is the
active transfer of Web pages to replication servers in the
proximity of clients [4, 5]. Likewise, software agents may be
roaming the network in search of information, representing
their owner at servers, etc. [6]. Finally, with the introduction
of Java, mobile code will form an important component of
many future Web-based applications [7, 8].

In this paper, we use the term mobile object to
collectively refer to any component—implemented in
hardware, software or a combination thereof—that is
capable of changing locations. We assume that a mobile
object can be distributed or replicated across multiple
locations, meaning that there may be several locations where
the object resides at the same time. This can be the case, for

example, with a whiteboard application shared between a
number of mobile users.

The existence of (worldwide) mobile objects introduces
a location problem: the need for a scalable facility that
maintains a binding (i.e. a mapping) between an object’s
permanent name and its current address(es). Such facilities
are normally offered by wide-area naming systems such
as the Internet’s Domain Name System (DNS) [9], DEC’s
Global Name Service (GNS) [10] and the X.500 Directory
Service [11].

However, existing naming systems are inadequate for
mobile objects for two reasons. First, wide-area naming
systems assume that name-to-address bindings hardly
change. This assumption is necessary to allow effective
use of data caches to improve look-up performance. In a
mobile environment, however, we must be able to handle
the case that bindings change regularly. Second, most
naming systems distribute the name space across different
globally distributed naming authorities, and subsequently
use location-dependent names [12]. Unfortunately, location-
dependent names make it harder to handle migration and
replication. Each time an object changes location, or
whenever a replica is added or removed, we have to adapt
the object’s name(s) as well. Alternatively, we could change
a name into a forwarding pointer, but this has serious
scalability problems when applied in worldwide systems.

What is needed is a naming facility that allows bindings
to change regularly and which offers complete location
transparency to its users. We have recently completed the
design of such a facility, which we call a location service, as
part of the Globe project [13]1. The Globe location service is

1Information on the Globe project can be found at
http://www.cs.vu.nl/ ∼steen/globe/ .

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


298 M. VAN STEEN et al.

designed to handle trillions of mobile objects worldwide. It
uses a worldwide distributed search tree in which addresses
of an object’s present location are stored. All location
operations (updating and looking up addresses) are based on
the use of globally unique and location-independent object
identifiers. The service can be used in combination with
traditional naming services, but which should then map user-
defined names to object identifiers instead of addresses. Our
approach distinguishes itself by (1) scaling worldwide and to
trillions of objects, (2) allowing objects to frequently update
name-to-address bindings and (3) supporting distributed
objects that reside at multiple locations at the same time.

In this paper, we present the basic algorithms for updating
and looking up locations. In Section 2 we give an outline of
our approach, followed in Section 3 by a detailed description
of our algorithms. Related work is presented in Section 4.
We conclude and discuss future work in Section 5.

2. ARCHITECTURAL DESIGN

In this section, we outline the architecture of the Globe
location service. An overview of our approach can also be
found in [14].

2.1. Naming and locating objects

A naming and location service maintains a mapping between
a user-defined name of an object and that object’s location.
Traditional naming services generally store name-to-address
bindings directly. In other words, each binding consists of a
record containing the name and address of an object.

In this approach, we are forced to update the binding
whenever the object changes its location. For example, if we
move a Web server to a machine with a different IP address,
we are generally forced to update the server’s DNS entry.
Likewise, the name-to-address binding has to be updated
whenever the user decides to change the object’s name.
As an example, if system administration decides to assign
different names to existing machines, we may be forced
to change name-to-address bindings of Internet services as
registered in DNS.

Consequently, by storing bindings between a user-defined
name and an object’s location as records in a database, we
create a dependence between two different, and in principle
unrelated, kinds of updates. For a wide-area system,
such a dependence may introduce serious management and
scalability problems.

In Globe, we follow a different approach. We separate
naming from location issues by introducing a two-layered
naming hierarchy. The upper layer deals with hierarchically
organized, user-defined, human-readable name spaces. The
lower layer deals with keeping track of each object’s location
independent of how that object is named by its users. The
interface between the two layers is formed by object handles:
a user-defined name is bound to an object handle, which
in turn is bound to the address(es) where the object can be
found.

An object handle is designed specifically for looking up an
object’s present location. It contains a service-independent

global unique identifier (SGUID) which is similar to a
universal unique identifier in DCE [15]. A SGUID is a true
object identifier [16]: (1) each SGUID refers to exactly one
object, (2) each object has exactly one SGUID, (3) a SGUID
is never reused and (4) an object will never get another
SGUID than the one initially assigned to it.

An object handle will generally obey the same properties,
although an object might have several object handles. An
object handle may also contain information that can be used
to assist in locating the object. An important property of
an object handle is its stability: it is assigned once to an
object and remains the same during that object’s lifetime, no
matter where the object moves to. No two objects ever have
the same object handle, even if generated 100 years apart in
distant countries.

Mapping user-defined names to object handles is done
by a naming service, and which can be based on existing
technology. For example, because object handles do
not change, an implementation can make effective use of
caching name-to-handle bindings, analogous to the approach
followed in DNS [9]. In fact, we can even use TXT records
in DNS to implement our name-to-handle bindings.

In contrast, mapping an object handle to a set of addresses
is the main task of a location service. In Globe, we adopt a
model in which an object offers contact addresses to client
processes. A contact address describes where and how an
object can be reached [13]. A contact address consists of, for
example, an IP address, a telephone number, or another kind
of address, as well as additional information that identifies
the place where the address lies. We allow an object to
regularly change its location, that is, to regularly change
the binding between its object handle and contact address.
In addition, we also provide support for binding several
addresses to a single object handle. In this way, it becomes
much easier to handle replicated objects. In this model, a
mobile, replicated object is characterized by having a set of
contact addresses which may change over time.

2.2. General organization

To efficiently update and look up contact addresses, we
organize the underlying wide-area network as a hierarchy
of geographical, topological or administrative domains,
similar to the organization of DNS. For example, a lowest
level domain may represent a campus-wide network of a
university, whereas the next higher level domain represents
the city where that campus is located. Lowest level domains
are also called leaf domains. Each domainD is represented
by a separate directory node, denoteddir(D), leading to a
worldwide search tree. Nodes may be internally partitioned
for scalability reasons. The internal organization of the
location service is entirely transparent to client processes.

A directory node stores information on objects in contact
records. Each node has a separate contact record per object.
A contact record contains a number of contact fields, one for
each child of the node where the record is stored. A contact
address of an object is always stored at exactly one directory
node. In addition, a path of forwarding pointers from the

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 299

Contact record at N0

Addr-1
Addr-2

(Empty)

 Forwarding
 pointer to N2

Contact addresses
from dom(N1)

Empty contact field 
Contact field with forwarding pointer
Contact field with address(es)

N0

N1 N2 N3

N21 N22

dom(N1)

FIGURE 1. The organization of contact records in the tree for a specific object.

root to the node where the address is stored is established for
that object as well. An implication of this design is that we
can always locate a contact address of an object by following
a chain of forwarding pointers for that object, starting at the
root. In practice, we can do much better, as we describe later.

As an illustration, Figure 1 shows part of the search tree
storing several contact addresses on behalf of a single object.
The domain represented by a nodeN is denoteddom(N).
In Figure 1, nodeN0 contains a contact record with three
contact fields, one for each of its children. The field for
child N1 contains two contact addresses, which both lie
in domaindom(N1). As we put forward in Section 3.5,
although contact addresses are normally stored in leaf nodes,
higher level nodes may decide to store addresses as well. We
follow the policy that in such cases, higher level nodes have
priority over lower level ones. The contact field for childN2

contains a forwarding pointer, meaning that somewhere in
the subtree rooted atN2 there should be at least one other
contact address stored for the object. Finally, the contact
field for nodeN3 contains no data at all, implying that there
are no contact addresses that lie in domaindom(N3). If none
of the contact fields of a contact record contains data, the
contact record is said to be empty.

Storage of addresses and pointers is subject to a number
of consistency conditions. In particular, when there are
currently no update operations in progress for a specific
objectO, we require that the following three conditions are
met.

C1: A contact address from a leaf domainD, is stored at
dir(D), or at the directory node of an enclosing (higher-
level) domain ofD.
This condition implies that a contact address from leaf
domainD can be stored only at a directory node that
lies on the path from the root todir(D).

C2: For each nodeN, the contact record forO at nodeN

stores a forwarding pointer to a child node ofN if
and only if the contact record forO at that child is
nonempty.
This means that we do not accept dangling pointers in
our tree. In other words, if we follow a forwarding

pointer we should eventually find a contact record
containing one or more addresses.

C3: A contact field can contain either a forwarding pointer
or contact addresses, but not both.
Together with the previous conditions, this condition
implies that as soon as we encounter a contact field
containing contact addresses, we can be sure that
we have found all contact addresses that lie in the
subdomain represented by that contact field.

When these conditions are met, the tree is said to be
globally consistent forO. As an example, the tree shown
in Figure 1 is globally consistent.

As we discuss below, a contact address that lies in leaf
domainD is always inserted or deleted by initiating a request
at the directory nodedir(D) of D. To simplify matters, we
require that the identity of the leaf domain in which the
address lies is encoded in the address. For example, a contact
address could be represented by a record containing fields
for the type of network address (such as ‘IPv6’), the actual
network address, and a name such as ‘cs.vu.nl’ that identifies
the leaf domain where that address lies. In contrast to most
network addressing schemes, our contact addresses are thus
seen to be location dependent.

2.3. Update algorithms

We require that an update operation on a globally consistent
tree leaves the tree in a global consistent state after its
completion (assuming that no other operations for the same
object are still in progress). For an insert request initiated
at leaf nodedir(D), it is easily seen that global consistency
implies that there can be only one node along the path from
the leaf node to the root where all addresses fromD are
stored. In particular, if there is such a nodeN, then an insert
request fromanyleaf domain enclosed bydom(N) should be
forwarded toN.

If there is no node that is already storing addresses from
D, we can choose one along the path to the root as long as
the global consistency constraints are satisfied. We follow
the policy that the highest level node that wants to store
addresses fromD, without violating global consistency, will

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


300 M. VAN STEEN et al.

Request arrives at
node with nonempty
contact record

Request to insert contact 
address at leaf node1

2

Forwarding pointer
is installed at N03

4

5

Nodes that want to
store address N0

N2

Node decides to
store address

N0

N2
Contact record at leaf 
node remains empty

N1

N1

(a)

(b)

FIGURE 2. The general approach to inserting a contact address, by which an insertion request propagates upwards to the lowest-level node
where the object is known (a), after which a downward path of forwarding pointers is set up (b).

be allowed to store addresses. As we explain in Section 3.5,
this policy allows us to construct highly effective caches,
even for mobile objects. Note that only those nodes are
eligible for storing contact addresses fromD which either
have an empty contact record or an empty contact field for a
domain that enclosesD.

Whenever an insert request arrives at a node that is willing
and capable of storing the address, that node will thus have
to check whether there is a higher level node along the path
to the root where the address should actually be stored. The
general approach to inserting an address is illustrated in
Figure 2. When an address is to be inserted, the request
is propagated to the first directory node where the object
is known, which isN0 in our example. Due to conditions
C2 and C3, nodes higher thanN0 cannot store the address
and thus need not be considered. Assuming nodeN0 does
not want to store the address (as we explain below), an
acknowledgment is propagated back to the initiating leaf
node while at the same time a path of forwarding pointers
is established. In our example, bothN1 and leaf nodeN2

want to store the address, in which caseN1 will be permitted
to do so.

There may be several factors that determine whether or
not a node wants to store addresses. For example, as we
discuss in Section 3.5, when an object is highly mobile,
meaning that it is inserting and deleting addresses at a
relatively high frequency, a node may decide that it is more
efficient to store addresses at a higher level node that covers
the smallest domain in which the object is moving. This
means that, although an insert operation is always initiated
at a leaf node, the contact address may actually be stored
at a higher level node. There may be other reasons as well
that influence the willingness of a node to store addresses.
However, we want to decouple our algorithms from such
decisions and introduce, for each node, a boolean operation
store here that returnstrue if and only if the node wants to
store addresses. If, on the path from a leaf node to the root,
there is no node willing to store addresses, we follow the
policy that addresses are stored in the root node. We allow
the outcome ofstore here to change in the course of time.

Deleting a contact address is straightforward and is done
as follows. First, the address is found through a search path
up the tree, starting at the leaf node where the address was
initially inserted. Once the contact address has been found,

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 301

Issue look-up request 
at leaf node

1Contact address found ⇒
return along reverse path

5

2 Contact record empty ⇒ 
forward request to parent

Nonempty contact record ⇒
follow path of forwarding 
pointers

Alternative paths ⇒
make arbitrary choice

4

3

FIGURE 3. The default approach for looking up a contact address.

it is removed from its record. If a contact record becomes
empty, the parent node is informed that it should delete its
forwarding pointer to that record, possibly leading to the
(recursive) deletion of forwarding pointers at higher level
nodes.

Inserting and deleting contact addresses is targeted toward
exploiting locality. Especially when contact addresses
already exist in the domain where the operation is being
performed, it is seen that the operations can be relatively
cheap.

2.4. Look-up algorithm

Looking up addresses can be done completely independent
of the update operations. In this paper, we consider only
look-up operations for one contact address; operations that
look up several addresses for the same object are easily
devised.

We adopt a simple look-up policy. A look-up operation is
always initiated at a leaf node (in particular, the one in the
client’s domain), and forwarded along the path to the root
until a node is reached having a nonempty contact record.
If that record contains a contact address, then the address
is returned to the client process. Otherwise, if the record
contains only forwarding pointers, a depth-first search is
initiated at an arbitrary child, until an address is finally
found. This approach is shown in Figure 3.

Again, it is seen that we exploit locality: the look-up
operation searches local domains first and gradually expands
to larger domains as long as no contact addresses are found.

3. ALGORITHMIC DESIGN

In this section we concentrate on the algorithmic design
of our location service. We first present the basic
data structures, after which we discuss in detail the
insertion of addresses. Address deletion is then relatively
straightforward, as well as our look-up algorithm. In the

following, we concentrate only on operations for a single
object, as operations for different objects are completely
independent.

3.1. Preliminaries

Contact records. For each directory node, we model an
object’s contact record as an (indexed) set of contact fields,
one field for each child. Each contact field stores either a
forwarding pointer, or a set of contact addresses, but never
both. A leaf node has exactly one contact field. Adopting
an Ada-like notation, we can describe these data types as
shown in Figure 4. We assume that each node has a unique
identifier of typeNodeID that can be used as an index for sets
of contact fields. An opaque data typeAddress is used to
model contact addresses.

Tentatively available data. As we make clear in the
succeeding sections, update operations gradually propagate
through the tree. While doing so, a decision is made where
to actually store or remove data. For example, our update
protocol prescribes that before storing an addressaddr at
some nodeN, we first need permission fromN’s parent. If
we wait until that permission is granted,addr cannot yet be
looked up, despite the fact that we already know that it is a
valid contact address. Therefore, it makes sense to make the
address tentatively available at the node where the operation
is currently being performed, without giving guarantees that
it will eventually also be stored there. To support tentative
availability of updates, we introduce views and view series.

A view on a variablev is a statement expressing a
change to the value ofv. Evaluating a view leads to the
tentative execution of the statement, returning the value
that v would have had if the statement had actually been
executed. Evaluating a view onv leaves the original value
of v unaffected; it is like a kind of shadow version. View
evaluation takes place only by means of view series. A view

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


302 M. VAN STEEN et al.

type ContactField is
record

addrSet : set of Address := ∅; −− Set of contact addresses for subdomain

isPtr : Boolean := false; −− True iff contact field is forwarding pointer to child

end record ;

type ContactRecord is set (NodeID) of ContactField;

−− Indexed set of contact fields

FIGURE 4. Data structures for storing contact addresses of a single object at a directory node.

(1) x : Integer := 4;

(2) y : Integer;
(3) vx : view series of Integer := x; x = 4; vx = 〈 〉
(5) x = 4; y = 5; vx = (4) append view 〈self := self + 1〉 to vx; y := vx;

(7) x = 4; y = 10; vx = (6) append view 〈self := self ∗ 2〉 to vx; y := vx;

(8) x := 5; y := vx; x = 5; y = 12

(9) apply view to vx; x = 6; y = 12; vx = 〈2 · x〉

FIGURE 5. A simple example of views and view series.

series associated with a variablev is a FIFO-ordered list of
views onv. The value of a view series is defined as the
result of evaluating its views in the order that they have been
appended to the series.

This mechanism is best illustrated by an example. In
Figure 5, we declare integer variablesx andy, and an integer
view seriesvx that is associated withx. (The notation
〈a, b, c〉 denotes a list of elementsa, b, c, with a being the
head of the list.) In line 4, we append a view that expresses
an increment ofx by 1. The pseudo-variableself points to the
variable associated with the view series, in this casex. We
then subsequently assign the value ofvx to y. At that point,
the value ofy is 5, whereasx is still 4. In line 5, another
view is appended expressing a multiplication by 2, followed
by an update ofy, which now has the value 10. Note that
at this point, the value ofvx is 2 · (x + 1). Therefore, if we
change the value ofx to 5, as in line 6, and updatey again,y
will become 12.

The view at the head of a view series, that is, the least
recently appended one, can be applied by evaluating its
expression and changing the value of the associated variable
accordingly. The view is then removed from the view series.
For example, in line 7, we apply the first view tox, thereby
changing the value ofx to 6 by incrementing it by 1. At the
same time, the view is removed, so that the view seriesvx

now reflects only the value 2· x . A view can also be directly
removed, that is, without applying it. Finally, the function
sizeof returns the length of a given view series.

A contact record for an objectO at node N has
an associated view seriestentativeCR(O, N). Because we
consider only operations for a specific pair of object and
node, we omit the indices throughout the remainder of our
discussion. This view series is an instance of the following
data type:
type TentativeRecord is view series of ContactRecord ;

As we shall see, all update operations first append a view to
a contact record’s view series to reflect the intended update.

However, this result is still tentative. Later, when the final
decision can be made on the update, the previously appended
view is either applied, making the result authoritative or
undone by removing the view from the view series. Details
are explained in the next section.

Remote invocations.Our algorithms are based on an RPC
mechanism [17], by which a node invokes an operation
at its parent and subsequently blocks until a reply is
received. We assume that the execution of an update or
look-up operation for a specific object runs to completion
or until it blocks, without being pre-empted by competing
operations. To ensure correctness of our algorithms,
we require that invocation requests and the subsequent
responses are handled in the order that they were issued.
How these semantics are implemented is described in [18].

3.2. Address insertion

The insertion of an address for a specific object is done by
two operations:

• insert addr is invoked at a node when that node is
requested to store the given address;

• insert chk is invoked at a parent node to obtain
permission to store the address at the invoking node,
or one of its children.

Note that whenever either operation is invoked at a
specific directory node it is known at that point that the given
address can be used to contact the object. In other words, the
address can, in principle, be returned as the result of a look-
up operation. The only thing that is not yet known, is exactly
at which node the address will be stored. For example,
when returning to Figure 2, we see that as soon as the insert
request is initiated at leaf nodeN2 we can already make
the address available to look-up operations fromdom(N2).
Likewise, when the request is propagated toN1 the address
can be made available to look-up requests fromN1. In both

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 303

(1) procedure insert addr(caller : NodeID; addr : Address) return (OK, DELETE) is
(2) viewedCR : TentativeRecord := tentativeCR; −− Make a copy of the current view series

(3) final action : (OK, DELETE) := OK;

(4) −− Start by making the inserted address tentatively available, by appending it to the contact

(5) −− record’s associated view series.

(6) append view 〈self (caller).addrSet := self (caller).addrSet + {addr}〉 to tentativeCR;

(7) −− Test whether the parent node is to be asked for permission to store the address. This is

(8) −− necessary when (1) the contact record appeared to be empty or (2) when no authoritative

(9) −− decision could yet be made.

(10) if parent 6= NIL and (empty(viewedCR) or sizeof(viewedCR) > 0) then
(11) if empty(viewedCR) and not store here(tentativeCR) then
(12) −− The contact record appeared to be empty, but the node is not prepared to store the address.

(13) −− Forward the request to the parent and ensure the appended view is removed.

(14) parent.insert addr(thisNode, addr);
(15) final action := DELETE;

(16) else
(17) −− The node wants to store the address, or may have to because there appear to be other

(18) −− addresses stored also. Check with the parent whether storing is permitted.

(19) final action := parent.insert chk(thisNode, addr);
(20) end if
(21) end if
(22) if final action = OK then apply view to tentativeCR;

(23) else remove view from tentativeCR;

(24) end if
(25) return OK;

(26) end insert addr

FIGURE 6. Insertion of contact addresses.

cases, we do not yet know where the address will actually
be stored. Our insert operations, therefore, can start by
making the address tentatively available at the present node
without yet having permission from the parent. Making the
address tentatively available means that either the address or
a forwarding pointer to the calling node is tentatively stored.

Operation insert addr. We start with the operation
insert addr, which is specified in Figure 6. We assume there
is a functionthisNode that returns the node identifier of the
node where the function is called. As mentioned before,
the variabletentativeCR denotes the view series associated
with the object’s contact record at the current node. The
operation starts with saving the state of the current contact
record in line 2 after which it makes the address available to
look-up operations by tentatively adding it totentativeCR in
line 6.

As a next step, the node has to check whether and how it
should contact its parent. There are three occasions on which
the parent needs to be contacted.

• If the contact record was empty when the operation was
invoked, the node may choose to store the address. If it
is not prepared to store the address, it should pass the
request to its parent. This is expressed in lines 11–15.
It also means that the previously appended view should
be removed when the call to the parent returns (line 15).
Note that the address is simply passed to the parent by
calling invoke addr again in line 14.

• If the contact record was empty and the node wants

to store the address, it will have to ask its parent for
permission by invokinginsert chk in line 19.

• Permission is also needed when there are pending
requests to the parent, that is, when a number of
tentative results from previous operations still exist. In
that case, the node cannot take any definitive decision
on whether or not to store the address. This situation is
also covered by the invocation ofinsert chk in line 19.

Depending on whether the parent had been called, or
what the response was, the operation eventually continues
with either turning the previously appended view into
authoritative data (line 22), or removing it altogether
(line 23).

Operation insert chk. The operationinsert chk is invoked
at the parent node when the invoking node or one of its
(grand)children wants to store the given address. The parent
is asked for permission to store the address at one of its
(grand)children.

If the parent agrees, it will, in turn, have to obtain
permission from the next higher level node and so on
up to the root of the tree. This permission results from
our policy that the highest level node that wants to store
addresses may do so provided global consistency is not
violated. Permission is not needed if the parent had already
stored a forwarding pointer to the calling child. When the
invoked node permits its (grand)child to store the address it
tentatively installs a forwarding pointer to the calling child,
thereby making the address available for look-up operations

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


304 M. VAN STEEN et al.

(1) procedure insert chk(caller : NodeID; addr : Address) return (OK, DELETE) is
(2) viewedCR : TentativeRecord := tentativeCR;

(3) subRecord : ContactField := viewedCR(caller);
(4) parent response, my response : (OK, DELETE);

(5) −− If this node already stores addresses, the new address should be stored here as well. This

(6) −− is also true when the contact record is empty but this node wants to start storing addresses.

(7) −− In that case, it has priority over the calling child. In all other cases, it will, in principle,

(8) −− allow its child to store the address and ensures it has a forwarding pointer to the child.

(9) if subRecord.addrSet 6= ∅ or (not subRecord.isPtr and store here(tentativeCR))

(10) then append view 〈self (caller).addrSet := self (caller).addrSet + {addr}〉 to tentativeCR;

(11) my response := DELETE;

(12) else append view 〈self (caller).isPtr := true〉 to tentativeCR;

(13) my response := OK;

(14) end if
(15) −− Now test whether the parent node is to be asked for permission to store the address. This is

(16) −− necessary when (1) contact record appeared to be empty or (2) when no authoritative

(17) −− decision could yet be made.

(18) if parent 6= NIL and (empty(viewedCR) or sizeof(viewedCR) > 0)

(19) then parent response := parent.insert chk(thisNode, addr);
(20) else parent response := OK;

(21) end if
(22) if parent response = OK then apply view to tentativeCR;

(23) return my response;

(24) else remove view from tentativeCR;

(25) return DELETE;

(26) end if
(27) end insert chk

FIGURE 7. Checking an insert operation with a parent.

in its domain. The pointer can be only tentatively installed
as long as higher level nodes have not yet given their
permission for storing the address at some lower level.

Alternatively, the parent may decide that it wants to store
the address itself and that it can do so without violating
global consistency. In that case, the invoking child, which
will have made the address tentatively available, is instructed
to remove the address or its forwarding pointer from its view
series. Removal is recursively propagated downwards to the
lowest level node where the address is tentatively stored.

The operation insert chk has a similar structure to
insert addr (see Figure 7). It decides whether to tentatively
add the given address to its contact record or tentatively
install a forwarding pointer to the calling child (lines 9–14).
An address is always added if there are already contact
addresses in the corresponding contact field. When the
contact field was empty, that is, it also did not contain a
forwarding pointer to the calling child, the node may decide
to store the address using itsstore here operation. When an
address is (tentatively) added, the calling child must clear
its contact record. This is accomplished by replying with
DELETE (lines 10–11).

When the invoked node is not going to store the address,
it gives the calling child permission to do so instead. The
invoked node will not store the address because it either is
not prepared to do so or because it already has a forwarding
pointer to the calling child. (Note that whenever a contact
field already has a forwarding pointer, it can never decide to

store an address. In other words, we discard the outcome
of store here.) In any case, it will have to ensure that
the address becomes (tentatively) available by having a
forwarding pointer to the caller. The latter is ensured by
simply installing the pointer, as is done in lines 12–13.

There are two occasions when the invoked node has to
pass the request to its parent.

• When there are still pending requests to the parent that
have not been answered yet, the node cannot take an
authoritative decision on whether or not to make the
address available. In that case, the parent has to be
asked for permission as well.

• When the node had an empty contact record when
the insert request arrived, this invocation concerns
currently theonly address from the node’s domain. In
that case, the parent is also unaware of the address and
should be asked for permission, regardless whether the
node is prepared to store the address or not.

These two cases are specified in lines 18–21. Finally,
depending on the reaction of the parent, the previously
appended view is either applied or removed as shown in
lines 22–25.

3.3. Address deletion

Deleting an address is done by a single operationdelete addr.
The operation must be invoked at the same leaf node where

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 305

(1) procedure delete addr(caller : NodeID; addr : Address; delPtr : Boolean) return (OK, NOTFOUND) is
(2) viewedCR : TentativeRecord := tentativeCR;

(3) addrFound : Boolean := (addr ∈ viewedCR(caller).addrSet); −− True iff the address is here

(4) ptrFound : Boolean := (delPtr and viewedCR(caller).isPtr); −− True iff there is a pointer to the caller

(5) −− If either the address is (tentatively) stored at this node, or a (tentative) pointer to the calling

(6) −− node exists, the operation will have to delete the address or pointer, respectively. Again, the

(7) −− results of the delete operation can be made available immediately.

(8) if addrFound or ptrFound then
(9) if addrFound

(10) then append view 〈self (caller).addrSet := self (caller).addrSet − {addr}〉 to tentativeCR;

(11) else append view 〈self (caller).isPtr := false〉 to tentativeCR;

(12) end if
(13) −− When the contact record is now empty we know that the parent has a pointer installed to this node.

(14) −− In that case, request the parent to delete it.

(15) if parent 6= NIL and empty(tentativeCR) then
(16) parent.delete addr(thisNode, addr, true);

(17) elsif parent 6= NIL and sizeof(viewedCR) > 0 then
(18) parent.delete addr(thisNode, addr, false);

(19) end if
(20) −− Unconditionally apply the previously appended view, i.e., remove either the address or the

(21) −− forwarding pointer.

(22) apply view to tentativeCR;

(23) return OK;

(24) elsif parent 6= NIL and (empty(tentativeCR) or sizeof(tentativeCR) > 0) then
(25) return parent.delete addr(thisNode, addr, false);

(26) else return NOTFOUND;

(27) end if
(28) end delete addr

FIGURE 8. Deletion of contact addresses.

the associated address insertion was initiated. (Note that we
assume that the leaf domain in which a contact address lies
is encoded in the address. We can thus easily identify the
leaf node where the deletion should be initiated.) When
a contact record at nodeN becomes empty after deleting
an address, the parent node should delete its forwarding
pointer toN. Removing a pointer at a parent node is handled
by delete addr as well, for which case it has an additional
boolean parameterdelPtr. The operation is specified in
Figure 8.

Completely analogous to making newly inserted ad-
dresses tentatively available, we can also immediately
announce that an address or forwarding pointer will be
removed. In other words, as soon as a nodeN is requested to
delete an address or forwarding pointer, it can do so without
waiting for its parent to have completed the operation.
Deletion takes place by appending a view by which the
address or forwarding pointer is removed from the contact
record. In this way, we even achieve that a previously
inserted address for which the insert operation has not yet
fully completed, that is, the address is yet only tentatively
available at a node, is immediately made unavailable again to
look-up operations at that node. Such effects are important
in wide-area systems. An alternative, by which a deletion
can come into effect only after the associated insertion has
completed, is generally unacceptable due to unpredictable
delays for the completion of an operation.

The operationdelete addr starts with undoing the effects of
the previous insert operation (lines 3–12). It checks whether
it stores the address (line 3) or forwarding pointer (line 4),
after which a view is appended reflecting the respective
removal (lines 10–11).

There are two occasions in which the parent should be
called as well.

• If the contact record was already empty, or when it
became empty on account of the current delete, the
parent node should remove its forwarding pointer to the
current node. This situation is specified in lines 15–17
for the case that record became empty and in line 25 for
the case that it already was empty.

• If there were pending operations to the parent, the node
does not yet know what the final situation will be when
all previous requests have been processed. Therefore,
the parent must be informed about the deletion as well.
This situation is expressed in line 18 and also in line 25.

3.4. Address look-ups

An important design issue for our location service is that we
wish to make update results available as soon as possible.
This is important in a wide-area system, where propagations
of updates may take a relatively long time due to network
and node failures. Therefore, look-ups operate on tentatively

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


306 M. VAN STEEN et al.

(1) procedure lookup(caller : NodeID) return Address is
(2) addr : Address := NIL;

(3) −− First check whether this node has any information on the object.

(4) if not empty(tentativeCR) then
(5) −− In principle, we should be able to find something here. Check whether any address is

(6) −− (tentatively) stored in this contact record. Otherwise, follow paths in the subtrees.

(7) choose any child with tentativeCR(child).addrSet 6= ∅;

(8) if child 6= NIL then −− An address has been found. Any stored address will do.

(9) choose any addr with addr ∈ tentativeCR(child).addrSet;
(10) return addr;
(11) else −− Check any downward path. If the path is being deleted, select a next one.

(12) foreach child with (child 6= caller) and (tentativeCR(child).isPtr = true) loop
(13) addr := child.lookup(thisNode);

(14) if addr 6= NIL then return addr end if
(15) end loop ;

(16) end if
(17) end if
(18) if addr = NIL and caller 6= parent
(19) then return parent.lookup(thisNode)

(20) else return addr
(21) end if
(22) end lookup

FIGURE 9. Looking up a single contact address.

available data, that is, the value of view series, rather than on
the authoritative data of contact records.

This policy works fine in a tree that is globally consistent
and even in a tree where some addresses have been
made tentatively available only. Problems arise when
some addresses are being deleted concurrently with look-
up operations, for in that case we may decide to follow a
path of forwarding pointers that is in the process of being
deleted. In that case we adopt a simple solution. If a path
has been followed without success, we simply continue the
look-up operation in another path, if possible. If all such
attempts fail, the look-up operation proceeds with the next
higher level node on the path to the root.

Our operationlookup is given in Figure 9. It starts
with checking whether the current node has a nonempty
contact record (line 4). If so, it tries to select an arbitrary
contact field containing addresses. This is expressed by the
choose any statement in line 7, which, in this case, takes
an index as a free variable and tries to match that in the
expression following thewith keyword.

If the selection succeeded, the operation subsequently
selects an arbitrary address from that contact field (again
expressed as achoose any statement), and returns the
address as the result to the calling node (lines 8–10). On the
other hand, if there were no addresses in the contact record,
the look-up operation continues by following an arbitrary
path of forwarding pointers in one of the subtrees rooted at
a child. Because each of these paths may be in the process
of being deleted, all contact fields containing a forwarding
pointer are checked (line 12). As soon as an address has
been found in one of the subtrees, the operation stops by
returning that address (line 14).

If no address could be found, we continue the look-up

operation at a higher level node (line 19). This makes
sense only when the operation was initially called by one
of the children or by a client process, that is,caller 6= parent.
Otherwise, when no address was found, we have reached
the root of the tree, andNIL, which is the present value of
addr can be returned (line 20). If we did find an address, we
simply return that value.

3.5. Discussion

If we ignore the use of view series, our algorithms are
relatively straightforward and strongly resemble standard
(recursive) implementations for search tree algorithms. The
intricacies mainly come from the fact that we wish to
make results available as soon as possible. This explains
why every operation starts with appending its anticipated
result to the view series associated with the current contact
record. Effectively, view series allow us to propagate update
results in increasingly expanding domains before the update
has been fully completed. For a wide-area system, the
availability of such tentative data is essential, as it may take
considerable time before results become authoritative.

To illustrate the benefit of our approach, assume the root
node is temporarily unreachable due to a network or node
failure. In that case, our location service is temporarily
partitioned into a number of subtrees (one for each child of
the root node). However, each subtree continues to operate
normally, although operations requested to be invoked at the
root node will experience a significant delay. By additionally
maintaining the order of invocations through view series, we,
at worst, experience performance failures. Clearly, the look-
up operation needs to be improved, as it is unacceptable that
a client must wait until the tree recovers from a failure. Long

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 307

Search path
Cache pointers

Object may be moving between different leaf domains

Place where addresses 
are stored is stable

FIGURE 10. Caching pointers to a stable location, even as the object moves.

or indefinitive waiting can easily be dealt with by using time-
out mechanisms.

Correctness. To assess the correctness of our algorithms,
we initially expressed our update and look-up operations
in the protocol verification language Promela [19], and
conducted a number of state space searches. After an initial
design phase, we constructed formal proofs of correctness.
The latter can be found in an extended version of this
paper [20].

Placement of contact addresses.There are several ways in
which we can improve the working of the location service
described so far. One important optimization consists of
adding caches.

By default, a contact address is stored at the leaf node
where it is inserted. However, this may not always be the
best choice. Consider the situation that an object is regularly
moving between two leaf domainsL1 andL2. Let D denote
the lowest level domain that covers both leaf domains. Each
time the object moves fromL1 to L2, the location service
creates and deletes a path of forwarding pointers from the
directory nodedir(D) of D to the leaf nodesdir(L1) anddir(L2),
respectively. When the object is moving regularly, it makes
sense to store the contact address in the object’s contact
record atdir(D). For example, by maintaining only the
path from the root todir(D), we can save on costs for path
maintenance.

In addition, there is another advantage of storing
addresses atdir(D). We know that, although the set of
addresses stored atdir(D) may change, the place where
these addresses are stored is now stable. This permits us
to effectively shorten search paths by caching pointers to
contact records. Specifically, we cache a pointer to the
directory node containing a contact address, at each node of
the search path when returning the answer to the leaf node
where a look-up request originated, as shown in Figure 10.

We now have the situation that the object which is moving
between leaf domains can be easily located by looking up its
present address in the nodedir(D) representing the smallest
domain in which all its movements take place. By caching
a pointer todir(D), the object may be tracked by just two
successive look-up operations (assuming a cache hit at the
leaf node): the first one at the leaf node servicing the
requesting process, and the second one atdir(D). This is a
considerable improvement over existing approaches.

We are currently investigating how stable locations for
storing addresses can be identified. Initially, we plan to use
a timer-based approach. If a node detects that pointers in a
relatively long-living contact record often change between
the record’s fields, it can conclude that contact addresses
instead of pointers should be stored in that record. Likewise,
if an address has been stored for a relatively long time at
some intermediate node, it is justified to store the address at
a lower-level node.

Scalability. Our search tree described so far obviously
does not yet scale. In particular, higher level directory
nodes not only have to handle a relatively large number of
requests, they also have high storage demands. Our solution
is to partition a directory node into one or more directory
subnodes, such that each subnode is responsible for a subset
of the records originally stored at the directory node. We
can easily use hashing techniques on the object handles to
identify subnodes at parents and children.

When partitioning directory nodes, simple calculations
show that storage requirements per subnode range between
10 and 100 gigabytes, which can be easily handled
with current technology. Whether we can actually meet
processing demands per subnode is somewhat speculative
because of the lack of reference data. However, it is more
likely that performance is limited by the capacities of the
underlying communication network.

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


308 M. VAN STEEN et al.

4. RELATED WORK

We have made a strict separation between a naming service
which is used to organize objects in a way that is meaningful
to their users and a location service which is strictly used
to contact an object given a unique identifier. Naming
services can be used for finding information based on the
meaning of a name, as is often used for Internet resource
discovery services. In our scheme, information retrieval
would start with finding relevant names, retrieving the
associated object handles and having the location service
return contact address for each object that was found to be
potentially interesting.

Location services are particularly important when sources
of information, that is objects, can migrate between
different physical locations. They are becoming increasingly
important as mobile telecommunication and computing
facilities become more widespread. To relate our work to
that of others, we therefore concentrate primarily on aspects
of mobility, for which we make a distinction between mobile
hosts and mobile objects.

Mobile computing
So far, much research has concentrated on mobile computing
which is generally based on a model in which users migrate
between different network locations. Usually, mobility
in these cases is tied to mobile hardware such as hand-
held telephones, personal digital assistants and notebook
computers. An implicit assumption underlying mobile
computing is that the mobile object is always at precisely one
location. Replication is less an issue, except when dealing
with fault tolerant issues as, for example, in the case of
disconnected file operations [21].

Location management in mobile computing generally
follows a home-based approach. This means that the system
assumes that there is always a home location that keeps track
of the object’s current location. Once the present location
has been found through the home location, messages can
be redirected. This is, for example, the way that mobile IP
works [22]. PCNs often work with a two-level search tree in
which the second level consists of visitor location registers
that contain addresses of visiting hosts in the current
region. A distinctive feature of our approach compared
to PCNs, is that we have several levels allowing us to
exploit locality more effectively by inspecting succeedingly
expanded regions at linearly incrementing costs.

The main drawback of a home-based approach is that it
does not scale well to worldwide systems. First, having to
contact a possible distant home location while the object
may actually be very near to the calling process is not
efficient: all locality aspects are neglected. Second, the
approach cannot adequately handle long-living objects, as
the home location must remain responsible for all its objects
forever. This is also true for the situations in which an
object has permanently moved to another location, even
perhaps decades ago. As a consequence, assigning a lifetime
telephone number is hard to realize efficiently with home-
based approaches.

As an alternative, there are several proposals based
on a hierarchically organized distributed database. A
straightforward solution without any caching facilities and in
which addresses are always stored in leaf nodes is described
in [23]. Awerbuch and Peleg [24] propose a solution in
which a moving object leaves a forwarding pointer which
is removed only after a considerable distance has been
traveled. In this way, a trade-off between costly update
operations and scalable look-ups is achieved.

Jain [25] uses an approach to caching that is somewhat
similar to ours. He also builds a hierarchical database
in which the leaf nodes contain contact addresses and
intermediate nodes pointers similar to ours. Once an object
has been located, a pointer to a node covering the domain in
which the object is moving can be cached at nodes on the
reversed search path. Our approach is different in that the
address of frequently moving objects is stored at a higher
level node instead of just a pointer. Consequently, our look-
up and update operations appear to be cheaper.

Alternatively, update and look-up strategies can be
dynamically adapted to a user’s migration pattern as
proposed by Krishnaet al. [26]. In contrast, we propose
to adapt the tree on a per-object basis by allowing addresses
to be stored at higher levels when necessary. Our update and
location policies remain the same. To avoid global look-ups
that may involve many hops, Janninket al. [27] propose to
selectively replicate user profiles. This comes very close to
allowing an object to have several contact addresses stored
by the location service. In our approach, however, we let
the object decide whether or not it wants to provide several
contact addresses.

Using a hierarchically distributed database leads to the
question when and how updates are propagated through the
tree. In most cases, an update becomes visible when it has
been completed. For wide-area systems, this approach is
not acceptable because update propagation is slow. Instead,
the results of update operations should be made available
as soon as possible. Similar, in wide-area systems, we
cannot accept that an operation is delayed until a previous
one is completed. To solve these problems, we introduced
view series that are used to implement a notion of tentative
data. Our mechanism resembles queued RPCs as used in
the Rover toolkit [28], except that we maintain the ordering
of invocations. In this sense, view series are comparable to
sender-based message logging used for recovery from node
and network failures as explained in [29].

Mobile object systems
An implicit assumption that location management services
for mobile computing are often making is that the object
moves gradually through the network. For this reason, many
algorithms are seen to work well because updates need not
be propagated through the entire distributed database. In
contrast to systems for mobile computing, mobile-object
systems often deal with mobile computations. In these
cases, one can imagine users to be fairly immobile and that
instead objects move between locations for reasons of load

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


ALGORITHMIC DESIGN OF THEGLOBE WIDE-AREA LOCATION SERVICE 309

balancing, dynamic replication, etc. An important difference
with mobile computing is that objects travel at a speed
dictated by the network and may pop-up virtually anywhere.
This requires a highly flexible approach to locating objects.

Mobile objects have mainly been considered in the
context of local distributed systems. In Emerald, mobile
objects are tracked through chains of forwarding pointers,
combined with techniques for shortening long chains and a
broadcast facility when all else fails [30]. Such an approach
does not scale to worldwide networks. An alternative
approach to handle worldwide distributed systems is the
location independent invocation (LII) [31]. By combining
chains of forwarding references, stable storages and a
global naming service, an efficient mechanism is derived
for tracking objects. Most of the applied techniques are
orthogonal to our approach and can easily be added to
improve efficiency. However, the global naming service,
which is essential to LII, assumes that the update-to-lookup
ratio is small. We do not make such an assumption.

A seemingly promising approach that has been advocated
for large-scale systems are SSP chains [32]. The principle
has been applied to a system called Shadows [33]. SSP
chains allow object references to be transparently handed
over between processes. In essence, a chain of forwarding
pointers is constructed from an object reference to the object.
Consequently, there is no need for any location service
because an object reference can always be resolved through
the chain of pointers. A drawback is that this approach
neglects locality, making it hard to apply to worldwide
systems.

5. CONCLUSIONS AND FUTURE WORK

The Globe location service provides a novel approach to
locating objects in mobile computing and computation.
Although the service has yet to be extensively tested in
practice, simulation experiments and local implementations
indicate that the service can scale efficiently worldwide. An
important component of the service is formed by pointer
caches. Further research and experimentation is needed
to see whether and how our caching policy can indeed be
effectively and efficiently deployed.

We are currently developing a prototype implementation
of directory nodes that can be easily tested on the Internet.
To come to that point, our research is currently concentrating
on minimal support for fault tolerance and security. We
initially concentrate on an implementation that can support
mobile and replicated Web pages and which can be
seamlessly integrated with existing Web browsers.

REFERENCES

[1] Forman, G. and Zahorjan, J. (1994) The challenges of mobile
computing.Computer, 27, 4, 38–47.

[2] Jacob, B. and Mudge, T. Support for nomadism in a global
environment. InProc. Workshop on Object Replication and
Mobile Computing, San Jose, CA, October, 1996. ACM Press,
New York.

[3] Weiser, M. (1993) Some computer science issues in
ubiquitous computing.Commun. ACM, 36, 7, 74–83.

[4] Baentsch, M., Baum, L., Molter, G., Rothkugel, S. and Sturm,
P. (1997) Enhancing the Web’s infrastructure: from caching to
replication.IEEE Internet Comput., 1, 2, 18–27.

[5] Gwertzman, J. and Seltzer, M. The case for geographical
push-caching. InProc. 5th HOTOS, Orcas Island, WA, May,
1996. IEEE, Los Alamitos, CA.

[6] Harrison, C. G., Chess, D. M. and Kershenbaum, A. (1995)
Mobile Agents: Are They a Good Idea. Technical Report, IBM
T.J. Watson Research Center, Yorktown Heights, NY.

[7] Fugetta, A., Picco, G. P. and Vigna, G. (1998) Understanding
code mobility.IEEE Trans. Softw. Eng., 24, 5, 342–361.

[8] Wollrath, A., Waldo, J. and Riggs, R. (1997) Java-centric
distributed computing.IEEE Micro, 17, 2, 44–53.

[9] Mockapetris, P. (1987)Domain Names—Concepts and
Facilities. RFC 1034.

[10] Lampson, B. (1985) Designing a global name service.
In Proc. 4th ACM Symp. on Principles Of Distributed
Computing. ACM.

[11] Radicati, S. (1994)X.500 Directory Services: Technology
and Deployment. International Thomson Computer Press,
London.

[12] Cheriton, D. and Mann, T. (1989) Decentralizing a global
naming service for improved performance and fault tolerance.
ACM Trans. Comp. Syst., 7, 2, 147–183.

[13] van Steen, M., Homburg, P. and Tanenbaum, A. (1999)
The architectural design of Globe: A wide-area distributed
system.IEEE Concurrency, 7, 1.

[14] van Steen, M., Hauck, F., Homburg, P. and Tanenbaum,
A. (1998) Locating objects in wide-area systems.IEEE
Commun. Mag., 36, 1, 104–109.

[15] Rosenberry, W., Kenney, D., and Fisher, G.Understanding
DCE. O’Reilly & Associates, Sebastopol, CA., 1992.

[16] Wieringa, R. and de Jonge, W. (1995) Object identifiers, keys,
and surrogates—object identifiers revisited.Theory Practice
Object Syst., 1, 2, 101–114.

[17] Birrell, A. and Nelson, B. (1984) Implementing remote
procedure calls.ACM Trans. Comp. Syst., 2, 1, 39–59.

[18] Ballintijn, G., Sandberg, M. and van Steen, M. Scheduling
concurrent RPCs in the Globe location service. InProc. 3rd
ASCI Annual Conf., Heijen, The Netherlands, June 1997,
pp. 28–33.

[19] Holzmann, G.Design and Validation of Computer Protocols.
Prentice Hall, Englewood Cliffs, N.J., 1991.

[20] van Steen, M. and Hauck, F. (1997)Algorithmic Design of the
Globe Wide-Area Location Service. Technical Report IR-440,
Vrije Universiteit, Department of Mathematics and Computer
Science.

[21] Kistler, J. (1996)Disconnected Operations in a Distributed
File System, (Lect. Notes Comput. Sc. vol 1002)Springer,
Berlin.

[22] Perkins, C. (1996)IP Mobility Support. RFC 2002.
[23] Wang, J. (1993) A fully distributed location registration

strategy for universal personal communication systems.IEEE
J. Selected Areas Commun., 11, 6, 850–860.

[24] Awerbuch, B. and Peleg, D. (1995) Online tracking of mobile
users.J. ACM, 42, 5, 1021–1058.

[25] Jain, R. (1996) Reducing traffic impacts of PCS using
hierarchical user location databases. InProc. Int. Conf. on
Comm.IEEE.

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org


310 M. VAN STEEN et al.

[26] Krishna, P., Vaidya, N. and Pradhan, D. Location man-
agement in distributed mobile environments. InProc. 3rd
Int. Conf. on Parallel and Distributed Information Systems,
Austin, TX, September 1994, pp. 81–88. IEEE.

[27] Jannink, J., Lam, D., Shivakumar, N., Widom, J. and Cox, D.
Efficient and flexible location management techniques for
wireless communication systems. InProc. 2nd Int. Conf.
on Mobile Computing and Networking, White Plains, NY,
November 1996. ACM/IEEE.

[28] Joseph, A. D., Tauber, J. A. and Kaashoek, M. F. (1997)
Mobile computing with the Rover toolkit.IEEE Trans.
Comput., 46, 3, 337–352.

[29] Johnson, D. and Zwaenepoel, W. Sender-based message
logging. In Proc. 17th Ann. Int. Symp. on Fault-Tolerant
Computing, Pittsburgh, PA, July 1987, pp. 14–19. IEEE.

[30] Jul, E., Levy, H., Hutchinson, N. and Black, A. (1988) Fine-
grained mobility in the Emerald system.ACM Trans. Comp.
Syst., 6, 1, 109–133.

[31] Black, A. and Artsy, Y. (1990) Implementing location
independent invocation.IEEE Trans. Par. Distr. Syst., 1, 1,
107–119.

[32] Shapiro, M., Dickman, P. and Plainfossé, D. (1992)
SSP Chains: Robust, Distributed References Supporting
Acyclic Garbage Collection. Technical Report 1799, INRIA,
Rocquencourt, France.

[33] Caughey, S. and Shrivastava, S. Architectural support for
mobile objects in large-scale distributed systems. In Cabrera,
L.-F. and Theimer, M. (eds)Proc. 4th Int. Workshop on Object
Orientation in Operating Systems, Lund, Sweden, August
1995, pp. 38–47. IEEE.

THE COMPUTER JOURNAL, Vol. 41, No. 5, 1998

 at V
riji U

niversiteit, Library on June 28, 2010 
http://com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org

