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Abstract

We describe a service for locating distributed objects identified by location-independent object identifiers.
An object in our model is physically distributed, with multiple active copies on different machines. Pro-
cesses must bind to an object in order to invoke its methods. Part of the binding protocol is concerned with
contacting the object, which offers one or more contact points. An object can change its contact points in
the course of time, thus exhibiting migration behavior. We present a solution to finding an object’s con-
tact points which is based on a worldwide distributed search tree that adapts dynamically to individual
migration patterns.

1 Introduction

The introduction of the World Wide Web and the ease of access to the Internet is radically chang-
ing our perception of worldwide distributed systems. Such systems should allow us to easily
share and exchange information. This also means that it should be easy to track sources of in-
formation, even if these sources move between different locations. (We do not address the prob-
lem of finding relevant sources of information as is done by, for example, resource discovery
services [11].) A key role in tracking sources of information is played by naming systems.

An important problem with current naming systems for wide area networks is that names are
location-dependent: a name is tightly coupled to the location of the object it refers to. For exam-
ple, a URL such as http://www.ripn.net/nic/rfc/rfc1737.txt is the name of a Web page containing
the text of RFC 1737. The name reflects exactly where the page is stored. If the page is moved
or replicated, the name will have to change as well. What is needed is a naming and identifica-
tion facility that hides all aspects of an object’s location. Users should not be concerned where
an object is located, whether it can move, whether it is replicated, and if it is replicated, how
consistency between replicas is maintained. This mechanism should be available to all applica-
tions as a standard facility. Above all, it should scale to the entire world, and be able to handle
trillions of objects.

In this paper, we outline a solution for locating objects using location-independent identi-
fiers. Our approach is based on a model in which processes interact and communicate through
distributed shared objects [5]. Each object offers one or more interfaces, each consisting of
a set of methods. Objects are passive; client threads use objects by executing the code for their
methods. In order for a process to invoke an object’s method, it must first bind to that object.
This means that an interface belonging to the object, as well as an implementation of that in-
terface must be placed in the process’ address space. To this end, a distributed object has one
or more contact points. A contact point specifies the network address and protocol with which
initial communication with the object can take place. An object’s contact points may change in
the course of time. For example, an object can be said to expand into, or withdraw from a region
when contact points in that region are established or removed, respectively.

We propose a two-level naming hierarchy for finding contact points. The first level deals
with hierarchically organized, user-defined name spaces. These name spaces are handled by a
distributed naming service. However, where traditional name service implementations main-
tain name-to-address bindings, names in our approach are mapped to object handles. An object



handle is a globally unique, and location-independent object identifier. (They have also been
coined pure names in [10].) Object handles form the second level in the naming hierarchy. Each
object handle is mapped to an object’s contact addresses. A contact address is a description of
a contact point, such as an IP address or the address of the current cell in the case of mobile tele-
phones. It is the task of a location service to maintain the mapping between object handles and
contact addresses. The design of a possible location server is the subject of this paper.

Our solution comprises a search tree in which an object’s contact addresses are stored at rel-
atively stable locations, near to the places where the object can be reached. We show how these
stable locations are identified dynamically, and that they may change as the migration behav-
ior of the object changes over time. Storing contact addresses at stable locations permits us to
effectively cache location pointers. The combination of dynamically identifying stable storage
locations for contact addresses, and caching pointers to those locations, is new. The result is a
location service that is highly efficient by exploiting locality in lookup and update operations.

Location services are not new and have shown to be relatively easy to implement in local dis-
tributed systems. However, they become much more complicated when scalability is taken into
account. We first present the logical organization of our location service in Section 2, and some
important optimizations in Section 3. The scalability of our approach is discussed in Section 4.
We conclude with a comparison to related work in Section 5.

2 The location service

In our model, we assume a hierarchical decomposition of a (worldwide) distributed system into
regions. For example, a lowest-level region may consist of a departmental local area network,
whereas a region one level higher may constitute a campus-wide network. This decomposition
is relevant to only the location service. It is entirely transparent to client processes.

With each region we associate a directory node, capable of storing contact points that lie
within that region. This leads to a logical organization as shown in Figure 1. As we explain in
Section 4, this organization corresponds to a virtual search tree, in the sense that each directory
node is distributed across several physical nodes for scalability purposes.

Figure 1: The logical organization of the location service as a virtual search tree.

Each lowest-level region contains one or more distributed objects called location resolvers.
A location resolver offers an interface to the location service, making the latter appear as just
another distributed shared object. Additionally, a location resolver encapsulates locality by al-
lowing clients to transparently communicate with the leaf node for its region. A process is au-
tomatically bound to a location resolver.



Inserting and deleting contact addresses

A contact address is initially entered and stored at the leaf node of the tree representing the loca-
tion of the corresponding contact point. The location service also maintains, per object, a path
of forwarding pointers from the root to each leaf node where a contact address is stored. Con-
tact addresses and forwarding pointers are stored in contact records. An empty contact record
contains only forwarding pointers, whereas a nonempty contact record will contain at least one
contact address. An implication of this design is that in the worst case, it is always possible to
locate every object by following the chain of pointers from the root node. In practice, we can do
much better than this, as described later.

Figure 2: Inserting a contact address for a previously unregistered object, resulting in a path of forwarding
pointers from the root to the leaf node.

Figure 2 illustrates the insertion of the first contact address for an object. First, the request for
insertion is propagated up the tree to the root, as shown in Figure 2(a). Then, a path of forwarding
pointers is established from the root to the leaf node where the insertion takes place. An empty
contact record containing a forwarding pointer is created at each intermediate node, as shown in
Figure 2(b). The address is finally stored in a record in the leaf node.

When a part of the path already exists, for example when inserting a second address in a
different region, only the missing pointers are established. As shown in Figure 3(a), an insertion
request propagates upwards to the first higher-level directory node where the object is already
known. From there on, a path of forwarding pointers is established to the leaf node where the
insertion takes place, as shown in Figure 3(b). In the case that there is already a contact record
for the object at the leaf node, the new address is simply added to that record.

The insert operation returns a region identifier identifying the leaf node where the insertion
takes place, and which can be used for deletion. Deleting a contact address is straightforward and
is done as follows. First, the address is found through a search path up the tree, starting at the leaf
node identified by the region identifier that was returned when the address was inserted. We also
support deletion of contact addresses without knowing the region identifier, by an exhaustive
search through the tree. Once the contact address has been found, it is removed from its record.
If a contact record contains no contact addresses or forwarding pointers, it is deleted. The parent



Figure 3: Inserting a contact address when the object is already known. Only the missing pointers are
established.

directory node is informed that it should delete its forwarding pointer to that record, possibly
leading to the (recursive) deletion of the object’s contact record at the parent node.

Figure 4: The default approach for looking up a contact address.

It is seen that inserting and deleting contact addresses exploits locality, especially when con-
tact addresses already exist in the region where the operation is being performed.

Looking up contact addresses

Looking up a contact address is done as follows. A process provides its location resolver with an
object handle, a quasi-random binary number, which it will often have obtained by means of the
naming service. The handle is then given to the leaf node of the resolver’s region. As shown in
Figure 4, a linear search path is established starting at the client’s leaf node, and upwards to the
first directory node where the object is already known. In the worst case, this means propagating
the request up to the root. The path then continues downwards to a leaf node, whose contact
addresses are then returned to the requester.

Note that there may be alternative ways for continuing a search path when a directory node
has several forwarding pointers to different contact records. Strategies for selecting amongst
alternatives are beyond the scope of this paper. Furthermore, clients can specify a minimum
and maximum number of contact addresses that should be returned. The location server then



applies backtracking to find contact addresses. When a nonempty contact record is reached, its
contact addresses are aggregated, but the search continues if the minimum number has not yet
been reached.

Again, it is seen that locality is exploited: the lookup operation searches local regions first,
and gradually expands to larger regions if no contact addresses are found.

3 Optimizations

We now explain how the location service dynamically finds optimal solutions on a per-object
basis. The optimizations are based on the observation that caching mechanisms are only truly
effective if cache entries change infrequently. For the location service, the only data it has full
control over are the placement of contact addresses in contact records (not the placement of the
objects themselves). This means that if we can place contact addresses in stable locations, we
can make effective use of pointer caches during lookup operations. As we show below, we can
even do this for highly mobile objects. Stabilizing the placement of contact addresses and sub-
sequently constructing pointer caches, is a distinctive and novel feature of our approach.

Figure 5: The situation of an object regularly moving between subregions.

Stabilizing the placement of contact addresses

Our first concern is to decide in which contact record a contact address is to be stored. By default,
an object’s contact address is stored in its contact record at the leaf node where it was initially
inserted. Now consider some region R as shown in Figure 5, and assume that an object O is
changing its contact addresses regularly between the subregions S1, S2, and S3. Also, assume
that there is always at least one contact address somewhere in R, so that there will always be a
contact record for O at directory node dir R .

Each time the object expands to a subregion Sk the location service creates a path of forward-
ing pointers from dir R to a leaf node in Sk. Likewise, when withdrawing from Sk the path has
to be deleted. If expansion and withdrawal occurs regularly, it makes sense to store the contact
address in the object’s contact record at dir R , thus saving the cost of path maintenance. In



addition, addresses of contact points in any of the subregions are now stored in a stable place,
namely at the directory node dir R . This leads to a situation shown in Figure 6.

Figure 6: Storing contact addresses in a stable place at a higher level.

Of course, the migration behavior of an object with respect to a region may change. For
example, assume the contact record at dir R has contained a contact address for subregion Sk
for quite some time. In that case, the contact address will be propagated to a directory node in
Sk, because apparently, stability occurs in a smaller region than R.

Stability is measured by timestamping contact addresses and forwarding pointers, as well as
recording how long an object has not had a contact point in a region. In all cases, history is taken
into account by weighted accumulation of old and new timing information.

Using pointer caches

By storing contact addresses in stable contact records, our model leads to the construction of a
search tree per object, in which contact records tend to remain in place even if the associated
object moves. This permits us to effectively shorten search paths by caching pointers to contact
records. Specifically, a pointer to the directory node containing a nonempty contact record is
cached at each node of the search path when returning the answer to the leaf node where a lookup
request originated as shown in Figure 7.

Figure 7: Installing cache pointers after looking up a contact address in the tree from Figure 6.

The combined effect of pointer caches and stable contact records should not be underesti-
mated. An object that primarily moves within a region R can be tracked by just two successive
lookup operations: the first one at the leaf node servicing the requesting process, and the second



one at the directory node for region R. Moreover, our solution forwards a request in the direction
of a contact point. This is a considerable improvement over existing approaches.

Caches are kept consistent in a lazy fashion. A timeout value is associated with each cache
entry, which depends on the stability of the referenced contact record. Caches can then, for ex-
ample, be regularly purged by a sweep algorithm, thus preventing the use of timers per cache
entry. In principle, the only other time that a cache entry can be invalidated is when the refer-
enced contact record has been deleted, or when it no longer contains contact addresses.

In the first case, the cache entry is removed and a lookup follows the default strategy de-
scribed before. In the second case, several strategies are possible. One is to continue the lookup
from the directory node containing the referenced contact record. Once contact addresses have
been found, the search path is traversed in the opposite direction, thereby updating or establish-
ing cache entries of intermediate nodes. Alternatively, the cache entry can be immediately in-
validated after which the default lookup strategy is followed.

4 Scalability and implementation

The search tree described so far obviously does not scale. In particular, higher-level directory
nodes not only have to handle a relatively large number of requests, they also have enormous
storage demands. For example, the root node needs to maintain a contact record for every reg-
istered object. This requires already a storage capacity in the terabyte range. In this section we
show that our location service scales using a partitioned implementation of the search tree.

Partitioning directory nodes

We partition a directory node into one or more directory subnodes, such that each subnode is
responsible for a subset of objects. As an example, we can use the first n bits of an object han-
dle to identify the subnode responsible for that object. Subnodes of a particular directory node
need not communicate with each other since they maintain different subsets of objects, and all
operations are performed on a per-object basis. Communication between directory nodes in the
original search tree only takes place between their respective subnodes. To illustrate, Figure 8
shows a search tree in which the root node has been partitioned into four subnodes based on the
first two bits (n 2), and each of the leaf nodes into two subnodes (n 1).

Figure 8: A search tree and a corresponding logical tree after partitioning the directory nodes into sub-
nodes.

In this example, we can guarantee a reasonable load balance if the object handles are uni-
formly distributed, or otherwise, if the partitioning is based on uniformly distributed numbers,
uniquely derived from object handles. This is the case, for example, if the first m bits of an object
handle are always generated as a random number and n m for all n.



In principle, each directory node can be partitioned independently according to the number
of available hosts and the expected load. In practice, this independence can compromise scala-
bility: each parent subnode may need to maintain a link to every child subnode. Consequently,
the number of links between a partitioned parent node and its partitioned children may be pro-
hibitively large. In our example, this problem does not occur. By agreeing to base all partitions
on the leftmost bits of object handles, we have chosen for a common partitioning scheme. How-
ever, each node may still individually decide on the number of leftmost bits it will use for parti-
tioning. Without going into further details here, it can be shown that such partitioning schemes
can be readily devised. The result is that the number of parent–child links is dramatically re-
duced and that scalability is not compromised.

Finally, if we assume that the root can be partitioned into 10,000 subnodes (which means that
a single root subnode will have to provide service to approximately 109 104 100,000 users),
we need also not run into any storage problems. If an object has, on average, five contact points,
a contact record at the root will consist of five pointers, the object’s handle, and some additional
stability information. We expect that this requires no more than 100 bytes. With a total of 1012

objects, each of the 10,000 root subnodes will have to store 10 gigabytes of data. This is defi-
nitely manageable. Similar results can be derived for the other directory nodes.

Implementing directory subnodes

As communication between directory nodes in the original search tree now takes place between
their respective subnodes each subnode should be aware of how the directory node with which
it communicates is actually partitioned. This information is contained in what is called a meta
node of which there is one per directory node. A meta node also maintains the mapping of sub-
nodes to physical nodes.

Each subnode of a directory node knows where the respective meta nodes of its parent and
children can be reached. We assume that the mapping of meta nodes onto physical nodes is rea-
sonably stable. Partitioning and mapping information contained in a meta node is also assumed
to be relatively stable, so that it can be easily cached by subnodes. This assumption is necessary
to avoid that meta nodes are queried each time a subnode needs to communicate with its parent
or children, which would turn the meta node into a potential communication bottleneck.

5 Discussion and related work

We have made a strict separation between a naming service which is used to organize objects in
a way that is meaningful to their users, and a location service which is strictly used to contact
an object given a unique identifier. Naming services can be used for finding information based
on the meaning of a name, as is often used for Internet resource discovery services [11]. In our
scheme, information retrieval would start with finding relevant names, retrieving the associated
object handles, and having the location service return contact address for each object that was
found to be potentially interesting.

Location services are particularly important when sources of information, i.e. objects, can
migrate between different physical locations. They are becoming increasingly important as mo-
bile telecommunication and computing facilities become more widespread. To relate our work
to that of others, we therefore concentrate primarily on aspects of mobility, for which we make
a distinction between mobile hosts and mobile objects.



Mobile hosts

So far, much research has concentrated on mobile hosts, usually either hand-held telephones or
mobile computers. A characteristic feature of these hosts is that their mobility is directly coupled
to that of their user. This has two important consequences that do not apply to mobility as con-
sidered in this paper. First, the speed of migration is limited to the maximum speed at which a
person can move: about 1000 miles per hour. Second, a host is always at precisely one location.
There is no notion of multiple contact points as we have introduced in our model.

Both features influence the design of a location service. By assuming a speed limit with re-
spect to migration, it becomes possible to adopt a strategy in which data structures gradually
adapt as the object moves. This has been used in very different types of location services. For
example, mobile hosts in the Internet are supported at the network level where routing tables are
dynamically adapted as a host moves [9]. In location services which make use of a distributed
search tree, higher-level nodes can effectively cache network addresses rather than pointers to
addresses. Whenever a host moves, it leaves a forwarding pointer to its next location. Caches are
updated when a considerable distance has been traveled (as described in [1]), or after a lookup.
But the speed limitation may even make it possible to avoid the use of caches altogether as il-
lustrated in [14].

Mobile objects

The situation becomes entirely different when dealing with mobile objects that (1) are not stati-
cally bound to a single host, and (2) can travel at almost the speed of light. This is the case, for
example, with World Wide Web pages and distributed (shared) objects in general.

Mobile objects have mainly been considered in the context of local distributed systems. In
Emerald [7], mobile objects are tracked through chains of forwarding pointers, combined with
techniques for shortening long chains, and a broadcast facility when all else fails. Such an ap-
proach does not scale to worldwide networks. An alternative approach to handle worldwide dis-
tributed systems is the Location Independent Invocation (LII) described in [2]. By combining
chains of forwarding references, stable storages, and a global naming service, an efficient mech-
anism is derived for tracking down objects. Most of the applied techniques are orthogonal to our
approach, and can easily be added to improve efficiency. However, the global naming service
which is essential to LII assumes that update-to-lookup ratio is small. Designing a global loca-
tion service that is not based on such an assumption is an important goal of our research.

A seemingly promising approach that has been advocated for large-scale systems are SSP
chains [12]. The principle has been applied to a system called Shadows [3]. SSP chains allow
object references to be transparently handed over between processes. In essence, an object refer-
ence is just a pointer to a data structure (called a stub), that acts as a representative for the object.
When passing an object reference from one process P to another process Q, a network connec-
tion between the two is established. P’s endpoint of this connection is called a scion, that of Q
is the stub just mentioned. The scion is capable of resolving an incoming reference to the ref-
erenced object, possibly by passing it to the stub in its own address space. Consequently, there
is no need for any location service because an object reference can always be resolved through
the chain of scion-stub pairs that the holder of the reference has established with the object. A
serious drawback of this approach is that exploiting locality is completely neglected. This is
completely unacceptable for worldwide systems.



Contributions of our approach

One of the main advantages of our approach is that our location service can handle distributed
objects that have several contact points and that show arbitrary migration patterns. In contrast
to the approach described in [8], we do not adapt update and search strategies to migration pat-
terns, but adapt the search tree on a per-object basis instead. By registering contact points in
the smallest region in which (part of) the object is moving we can make effective use of pointer
caches. The combined effect is an extremely short search path, in the optimal case of only length
two, from a client to the object. In just two hops it is possible to locate even seemingly randomly
migrating objects. This is a considerable improvement over existing approaches.

The use of pointer caches instead of data caches has also been proposed for PCNs. The main
reason to apply caching in those cases is to avoid excessive network traffic to the home location
of a host, which forms the root of a two-level search tree. Caching is done at the second level,
by pointing to locations where the host is expected to be found. Cache consistency is achieved
by invalidation on demand [6], but can even be done through active updates [13]. However,
caches in PCNs do not account for update patterns. As also observed in [4], exploiting locality
in location updates can reduce tracking costs. A distinctive feature of our approach compared to
PCNs, is that we have several levels allowing us to exploit locality more effectively by inspecting
succeedingly expanded regions at linearly incrementing costs. On the other hand, locality is also
exploited in location updates, making our pointer caches highly effective.
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