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Abstract

Development of parallel applications has been seriously
hampered due to the intricacy of the underlying program-
ming model in which hardware architectural features have
to be taken into account in order to ensure efficiency. The
standard approach towards parallel program development
has, in addition, resulted in applications which are difficult
to port to different parallel computers. The parTool project
tackles these problems by aiming at a parallel program-
ming system in which high-level specification tools play
a prominent role. This paper outlines two components of
the parTool system: the transaction-based programming
language Vista, and the data-parallel language Booster.

Introduction

Parallel processing, for years being an academic curiosity,
has now been brought to the fore front of commercial in-
novation. Parallel machines are readily available to the
users community, promising a significant speed up over
the use of a single processor to solve a problem.
However, the additional complexity inherent to parallel
processing generally makes it hard to achieve this objec-
tive as a parallel software developer is confronted with a
programming model in which aspects such as processor-
memory pairing, network topologies, and ways of syn-
chronization and communication have a significant influ-
ence on the software design process.

In this paper we present an overview of the approach
followed by the parTool project in developing a parallel
programming system. The key feature of parTool is a
separation of algorithm specifications and the allocation of
hardware resources to data and computations. Algorithms
are formulated at an abstract level in a specification lan-
guage having its own ideal virtual machine, thus preserv-
ing the parallelism inherent to the algorithm. Mapping
the algorithm onto a specific target machine, i.e., allocat-
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ing resources to data and computations, is done by adding
annotations to the description of the algorithm.

Using separate mapping information, programs can be
generated for a variety of parallel machines including
shared-memory- and distributed-memory machines. As
each machine may require a different resource allocation
strategy porting a program from one machine to another is
done by merely changing the mapping annotations. The
principle is illustrated in Figure 1

Figure 1. Separation of concerns in paraliel program
development.

In the following two sections we discuss two promi-
nent components of parTool: the transaction-based pro-
gramming language Vista, and the data-parallel language
Booster. The last section concludes with some final re-
marks and indications for further research.

Transaction-based programming in Vista

The Vista language provides a transaction-based model of
programming, which makes it particularly suited for sym-
bolic computations. Transaction-based parallel program-
ming is founded on generative communication as origi-
nally coined in the Linda programming language [2,4].
Using generative communication, data is located in a
global yet logically distributed space and is addressed by




content rather than by explicit naming.

Conventionally, a parallel program consists of a num-
ber of sequential processes, that concurrently retrieve and
insert data. In Vista, generative communication is €x-
tended with transaction-based programming. This means
that a program consists of a collection of concurrently ex-
ecuting transactions, i.e., query-action pairs, that itera-
tively update the data without mutual interference.

Transaction-based programming in combination with
generative communication yields highly parallel pro-
grams, and by absence of explicit communication pat-
terns, it considerably eases the parallel programming task
as shown in [11].

Data representation. Fundamental in writing Vista
programs is the form in which data is represented. In
Vista, data is represented by a global space of tuples. A
tuple is simply a sequence of values, e.g. (“pi”, 3.14) or
(“Mary”, female, 34). The first tuple consists of the string
“pi” followed by the numeric value 3.14. Likewise, the
second tuple consists of the string “Mary”, the literal fe-
male, and the numeric value 34. To manage the diversity
of tuples, every tuple is associated with a descriptor. For
instance, the following descriptor constant can be used as
a type definition of the tuple (“pi”, 3.14).
descriptor constant {
string name;
float value;

}

Transactions. In transaction-based programming tuples
are inserted and deleted by a set of transactions. In general,
a transaction consists of a query part and an action part.
The query part makes a selection of tuples, while the ac-
tion part deletes and inserts tuples.

The query part of a transaction selects a number of tu-
ples that satisfy some condition. For instance, the value
for & can be retrieved by the query

select constant(c,v) where (c == "pi");

The query searches for a tuple of type constant, where the
first field contains the value “pi.” If a matching tuple is
found, the value of the second field is returned in the vari-
able v. In general, it is possible that more than one tuple
can be found that matches the query. In that case, a selec-
tion is made at random.

The action part of a transaction deletes and inserts tu-
ples. By default, every tuple selected in the query part is
deleted by the action part. The default can be overridden by
preceding a tuple in the query part with the marker ‘?’.
The following query, for instance, does not delete the se-
lected value for . Instead, it merely copies the value into
variable v.

164

select ?constant (c,v) where (c == "pi®);

Tuples that are to be inserted must be specified in the ac-
tion part explicitly. As an example, consider the follow-
ing query-action pair.

select constant(c,V)

where (c == "pi" && v <= 3.14);
insert constant(c, 3.1416);

The query-action pair selects a value for « less than or
equal to 3.14 and replaces it by the more accurate value
3.1416.

A transaction consists of a query-action pair and the re-
quired variable declarations. A complete transaction for re-
placing the value of 1 can be specified as follows.

transaction replace { string c; float Vi

select constant{c,V)
where (c == "pi" && v <= 3.14);
insert constant(c, 3.1416);
}

Programs. A program is constructed from a number of
transactions and a description of the initial tuples. The tu-
ple space is partitioned into a collection of stores, where
each store contains zero or more tuples. Program execu-
tion commences from the initial tuples and proceeds by
selecting non-deterministically a transaction in the pro-
gram which query part can be satisfied. The transaction is
then executed by making a selection of tuples such that
the query succeeds and subsequently deleting and inserting
tuples in accordance to the action part. Execution contin-
ues while there are transactions which query part can be
satisfied. Otherwise, program execution terminates.

To illustrate, we consider a program consisting of the
previous transaction replace and the initial tuple
(“pi”, 3.14). In the program, the initial tuple is specified
to reside at a store constants by the declaration

store constants { constant("pi", 3.14); }

The declaration defines a store initially consisting of the
tuple (“pi”, 3.14). The program executes transaction re-
place exactly once, after which it terminates leaving the
tuple (“pi”, 3.1416) in store constants.

Parallelism in a program is obtained by allowing mul-
tiple transactions to execute at once. An important as-
sumption is that transactions execute without mutual in-
terference. This means that multiple transactions execut-
ing at once have exactly the same effect as executing the
transactions in an arbitrary sequence.

A programming example
To illustrate, we consider a transaction-based parallel pro-

gram for solving the single-source shortest path problem.
The problem description is as follows.



Consider a directed graph consisting of vertices num-
bered 0,...,n-1. With every edge a non-negative weight is
associated, given by a weight function W defined on each
pair of vertices. We assume that W(u,v) is infinite if there
is no edge from vertex u to vertex v. Given a source ver-
tex s, the single-source shortest path problem consists of
determining the length of a shortest path from s to v, for
every vertex v in the graph.

The following program solves the single-source short-
est path problem for a graph with source vertex s.

descriptor vertex {
int id;
float length;

}

store graph {
for (int v = 0; v < n; v++)
vertex (v, W(s,Vv)):

}

transaction find(n}
float x, y:
select { ?vertex(u,x); vertex(v,y); }
where (y > x + W(u,v));
insert vertex(v, x + W(u,v));
}

(int u, v) {

The vertices are represented by tuples of type vertex resid-
ing at a store named graph. Initially the store contains, for
every vertex v, a tuple (v, W(s,v)). That is, for every ver-
tex v, there is a tuple which length-field equals the weight
of an edge from the source s to v; at termination of the
program, the length-field will equal the length of a short-
est path from s to v.

The shortest paths in the graph are determined by trans-
action find. Intuitively, the query acquires vertices x and v,
such that a path from s to v via u yields a shorter length
than the path to v found so far. If the query succeeds, the
transaction deletes the tuple (v, y) and replaces it by the
tuple (v, x + W(u,v)). The program terminates if the query
part of transaction find no longer succeeds. It is easily
seen that this situation corresponds to a state where all
shortest paths have been found.

Parallelism is obtained by instantiating multiple trans-
actions. In the program, an array of transaction find is de-
clared, consisting of as many transactions as there are ver-
tices in the graph. Since transactions are executed concur-
rently without mutual interference, this allows each vertex
in the graph to be examined in parallel.

Mapping Programs to Machines

Transaction-based parallel programs are formulated at a
convenient level of abstraction. This allows the program
engineer to focus on the specification of a programming
solution in which the complex details and particularities
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of a multiprocessor system can be neglected.

Eventually, however, the program will have to run on

a specific system, preferably as efficiently as possible.

Dependent on the type of machine, this means that the

following issues must be addressed.

1. An efficient schedule must be devised for the transac-
tions in the program (for every type of machine).

2. The schedule must be partitioned among the available
processors (for multiprocessor systems).

3. The tuples in the program must be distributed among
the available memories (for distributed-memory ma-
chines).

Schedules identify a particular order in which transactions

are executed. To illustrate, we return to the program in the

previous section for which we propose to adopt a depth-
first search strategy, which is specified by the following
schedule.

schedule examine (int u) {
forall (int v = 0; v < n;
if ( W(u,v) < o )
if ( find([v](u,v) ) examine(v);

v++)

}

Schedule examine(u) looks at all outgoing edges (u, v) of
a given vertex u. If a shorter path is found to vertex v, by
executing transaction find[v], then vertex v is examined
next. Note that all outgoing edges can be examined in par-
allel. If no more edges remain to be examined, the sched-
ule terminates. A complete schedule of the program is
given by examine(s), which starts at the source vertex.

Clearly, the above schedule can be executed on unipro-
cessor systems. Since modern parallel systems based on
shared memory almost all provide automatic load-balanc-
ing in hardware, the schedule can be used on this type of
machine as well.

For multiprocessor systems based on distributed mem-
ory, we must also provide a partitioning of the schedule
across the available processors. Assuming a system con-
sisting of p processors, where each processor has exclu-
sive access to a local memory, this can be specified as fol-
lows.

distribution graph {

float x;
for (int v = 0; v < n; v++)

vertex(v,x) @ (v % p);
}

schedule examine (int u) {
forall (int v = 0; v < n;
if ( W(u,v) < o )
if ( ?2find(v](u,v) @ (v % p) )
examine (v) ;

v++)

}

First, we assign each tuple in store graph to a dedicated
processor. For simplicity, we use a static wrap-around as-




signment of the vertices to the available memories. In
general, the assignment need not be static.

The schedule is partitioned among the available proces-
sors by assigning the execution of each transaction to a
specific processor. In the example, the schedule is parti-
tioned such that execution of a transaction is dispatched to
the processor that owns the vertex to be examined by the
transaction.

Data parallelism in Booster

The notion of transactions in Vista makes the language
particularly suited for symbolic computations. To facili-
tate the specification of numerical computations as well,
we developed the Booster language as part of the parTool
project. The language offers its users a high level of ab-
straction in programming numerical algorithms while
maintaining the possibility to generate efficient parallel
programs in C or FORTRAN.

Shapes and Views. In a conventional programming
language (such as FORTRAN), the array is used as the
basic data structure for storing related data elements. These
elements can be accessed by use of indices to the array.
However, it is not possible in these languages to reason
about or manipulate indices themselves. This ability is
particularly relevant to parallel programming where it is
often important to identify sets of index values that refer
to data upon which computations can be executed in paral-
lel. The importance of this has already been recognized in
a language like Actus [10].

In Booster, these observations have resulted in a strict
distinction between data- and index-domain of a program.
The data-domain consists of several possible data types,
just as in conventional languages. The index-domain con-
sists of non-negative integer values. On the index-domain
ordered index sets can be defined, and operations can be
performed on these sets independent of the data-elements
that the index values in question refer to.

There are two concepts in Booster to reflect the two
domains. The first is the shape, Booster’s equivalent of a
traditional array. Unlike arrays, shapes need not necessar-
ily be rectangular. Shapes serve, from the algorithm de-
signer’s point of view, as the basic placeholders for the
algorithm’s data.

The second concept is that of the view. A view enables
the manipulation of the index set of a shape without af-
fecting the actual data in the shape. By changing the orig-
inal index set one can still access the elements of the
shape, but it is as though we now “view” the shape’s data-
elements through a different window.

The declaration of shapes is fairly straightforward, e.g.

SHAPE A (3#10) OF REAL;
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declares a matrix A of 3 by 10 elements. The index set for
this shape is the ordered set {(0,0), (0,1), ... 2.8). 2.9}

Content Statements. Content statements allow the
manipulation of the data stored in shapes:

A := 2.5;
A[1,8) := 3.1416;

In the first content statement, all elements of A are initial-
ized to 2.5. In the second statement, the value 3.1416 is
stored in the element of A with index value (1,8). Content
statements are Booster’s equivalent of the standard as-
signment statement in procedural languages. Apart from
standard scalar operators, Booster supports their multi-di-
mensional equivalents. Multi-dimensional operators are
defined strictly element-wise, that is the operator is ap-
plied to the elements which have the same ordinal num-
ber! and all such operations are applied simultaneously.

View Statements. Index sets are manipulated in
Booster by view statements. They come in four flavours.
The most simple view statement defines the identity view:

V <= A;

where V is called a view identifier. By the statement
v<-n, the view identifier V is bound to the index set of
the shape A. After the view statement in the code given
above, the two content statements below will have the
same effect.

A[0,0]
vio,0]

0

A[10,0];
v([10,0];

The following view statement defines a selection view:

V <- A[0,3:8];

The index expression 3:8 selects the subset or range of
indices (0,3) through (0,8) of A and binds them to the
view identifier V. The element V[0, 0] actually refers to
A[0, 3], etc: renumbering of the index sets after a view
statement causes all index sets to start from zero, just as
the original index set does. A itself is never affected by
any view statement.
The second type of view defines a permutation view:

V{0,i] <- A[0,9-1];

In this statement, i denotes a free variable, which is
bound to the index set of the structure it is applied to.
Above, we access, through v, the elements of the first
row of A in reverse order.

Free variables can be used for even more powerful pur-
poses, as is illustrated by the third type of view: the di-

1 The ordinal ber of an el t is the sequence number

derived from ordering the indices lexicographically.




mension changing view. An example of a dimension in-
creasing view is:
V{2#5}[1i,]) <= A[O, (5*1)+]];

The (one-dimensional) first row of A can be accessed
through the two-dimensional view identifier v. The rela-
tion between the index sets of V and A is defined by the
functional relations of the free variables i and 3. For all
practical purposes, the identifier v now becomes a two di-
mensional structure. The fact that the index set of this
structure refers, via a view identifier, to a one-dimensional
structure is completely transparent to the “user” of v.
Dimension decreasing views are relatively simple:

VvV <= A[l,_};

Here the second row of A is selected and assigned to the
view identifier V. The underscore character stands for se-
lecting all elements in that dimension.

Finally, Booster has content selection views, in which
value dependent selections can be taken on structures.

LU Factorization

To illustrate, we take the well-kown LU factorization al-
gorithm, without pivoting. The algorithm takes a previ-
ously declared non-singular nxn matrix A as input. The
algorithm eliminates in successive steps each column, un-
til an upper triangular matrix results. First, we need a
Sunction for matrix multiplication:

FUNCTION xmtrx PRIORITY 7 (A,B) -> (C):
A,B,C (n#n) OF REAL;

BEGIN
Cli, 3]

END;

:= REDUCE(+,A[i,_ 1*BI_, Jl);

The function is defined according to the element-wise se-
mantics of Booster. REDUCE is the built-in reduction
function. The body of the L.U-factorization program can
now be specified as follows:
H <- A;
WHILE size(H) > 1 DO
R <= H([l:upb,l:upb];

R := R - H[l:upb,0] xmtrx
H[0,1:upb]l/H[0,01;
H <- R;
END;

In each step, four selections are involved: the pivot ele-
ment H[0, 0], the pivot row H[0, 1 :upb], the pivot
column H[1:upb, 0], and the remainder R (see
Figure 2). In the initial step, the index set of B is set to
the view identifier H. The remaining part of the algorithm
is coded as a conditional loop with three statements. The
first view statement defines the remainder region and the
succeeding content statement performs the actual opera-
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tion, using the four regions. In the second view statement,
the view identifier H is redefined as the remainder R. The
algorithm terminates of the size of the view H is equal to

1.
H[0,0]
o Ii I H[0,1l:upb] !
! B
R - N R
L )
V- ‘H[l:upb,O]
L L1111
a N ¥
- > -
—
HON 4 A b,

Figure 2. LU-decomposition.

Resource Allocation for Parallel Machines

To discuss Booster’s method of resource allocation, let us
return to the concepts of shapes and views. In shared-
memory processors, the resources needing allocation of
processing responsibilities are the processors. In dis-
tributed-memory processors also data has to be allocated to
the distributed memory. In Booster, both allocations are
specified through computation and data organization anno-
tations. To this aim, the same mechanism is used as pro-
vided for index manipulation in the construction of algo-
rithms, namely the view. This principle is illustrated in
Figure 3.

Views @ Algorithm Level
Shape Booster Level
Computation (Virtual) Machine Level
and Data-
Organization

Figure 3. Computation and data organization.

Both allocations can be combined, i.e. an annotation spec-
ification defines both processing responsibilities and data




assignments. The default assumption is that the processor
owning the data, is also responsible for any update of that
data, including the associated processing. This technique
also applied in FORTRAN and C by [1,3,5,6]. In
Booster, the processing and data responsibilities can be de-
fined combined or separately, allowing complicated as-
signments to be made.

As an example, a two-dimensional shape is decom-
posed in a row-wise fashion for parallel machine with p
processors. This is described with the following dimen-
sion decreasing view function:

VIEW FUNCTION row_decompose (R) -> (Q)

Q (n #n); R (p# (ndivp #n);

BEGIN

Qri, 31 <~
R{i div (n div p),i mod (n mod p),Jjl;
END;

The principle is illustrated below in Figure 4. The view
function concept is used to encapsulate the view
row_decompose.

row_decompose F
=

pl

Shape (or view) Machine level representation

Figure 4. Row-wise decomposition.

This view function can now be used to impose a resource
allocation on the LU-factorization algorithm.
ANNOTATION MODULE LU;
IMPORT
R (n#n) FROM LU;
Proc (p#(n div p)#n) FROM Processor_Model;
BEGIN
R <- row_decompose (Proc);
END.

In the annotation module, we import the matrix B from
the program module LU and a processor model, which
provides a (virtual) machine image. The view
row_decompose is now used to define both processing-
and data responsibility. The decomposition is shown in
Figure 4.

A more elaborate introduction to the Booster language
and its annotations can be found in [8]. The translation of
Booster is discussed in [7,9].

Concluding remarks

We have presented two high-level specification languages
in the parTool system: the parallel transaction-based lan-
guage Vista, and the data-parallel language Booster.
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Currently, a prototype Booster compiler generating C-code
is operational and work is in progress to include optimiza-
tions in the system. The same compiler will be used to
translate Vista programs to C and FORTRAN.
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