Distributed Systems

Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science

steen@cs.vu.nl

Chapter 07: Consistency & Replication

Version: November 26, 2012

vrije Universiteit amsterdam Jﬁb

Consistency & Repication
Consistency & replication

@ Introduction (what's it all about)
@ Data-centric consistency

@ Client-centric consistency
@ Replica management

@ Consistency protocols

Consistency & Replication 7.1 Introduction Consistency & Replication 7.1 Introduction

Performance and scalability

To keep replicas consistent, we generally need to ensure that all conflicting

operations are done in the the same order everywhere

Conflicting operations

From the world of transactions:

@ Read-write conflict: a read operation and a write operation act

concurrently

@ Write—write conflict: two concurrent write operations

Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability Solution: weaken consistency

requirements so that hopefully global synchronization can be avoided

@

7.2 Data-Centric Consistency Models
Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the
data store specifies precisely what the results of read and write operations
are in the presence of concurrency.

Consistency & Replication 7.2 Data-Centric Consistency Models

Essential
A data store is a distributed collection of storages:

Process Process Process

% % % Local copy

Distributed data store

cy & Replication 7.2 Data-Centric Consistency Models

Continuous Consistency

We can actually talk a about a degree of consistency:

@ replicas may differ in their numerical value

@ replicas may differ in their relative staleness

@ there may be differences with respect to (number and order) of
performed update operations

Conit

Consistency unit = specifies the data unit over which consistency is to
be measured.

y & Replication 7.2 Data-Centric Consistency Models

Example: Conit

Replica A Replica B

Operation Result Operation Result
te=2) tx=2)

=21 tr=s)
=
<14, A>| x:=y*2 [x=6]

Vector clock A =(15,5) Vector clock B =(0,11)
Order deviation =3 Order deviation =2
Numerical deviation = (1, 5) Numerical deviation = (3, 6)

Conit (contains the variables x and y)

@ Each replica has a vector clock: ([known] time @ A, [known] time @ B)

@ B sends A operation [(5,B): x := x +2]; A has made this operation
permanent (cannot be rolled back)

Consistency & Replication 7.2 Data-Centric Consistency Models

Consistency & Replication 7.2 Data-Centric Consistency Models

)

Consistency & Replication 7.2 Data-Centric Consistency Models Consistency & Replication 7.2 Data-Centric Consistency Models

Example: Conit

Replica A Replica B
Conit Conit
: x=2,y=5
Operation Result Operation Result
tee21 txe2)
=2 ty=s)
Vector clock A =(15,5) Vector clock B =(0,11)
Order deviation =3 Order deviation =2
Numerical deviation = (1, 5) Numerical deviation = (3, 6)

Conit (contains the variables x and y)

@ A has three pending operations = order deviation = 3

@ Ahas missed one operation from B, yielding a max diff of 5 units = (1,5)

cy & Replication 7.2 Data-Centric Consistency Models Consistency & Replication 7.2 Data-Centric Consistency Models

Sequential consistency

Definition

The result of any execution is the same as if the operations of all

processes were executed in some sequential order, and the operations

of each individual process appear in this sequence in the order

specified by its program.

P1: W(x)a P1: W(x)a

P2: W(x)b P2: W(x)b

P3: R(x)b R(x)a P3: R(x)b R(x)a

P4: R(x)b R(x)a P4: R(x)a R(x)b
(a) (b)

8/41

Consistency & Replication 7.2 Data-Centric Consistency Models Consistency & Replication 7.2 Data-Centric Consistency Models

Causal consistency

Definition

Writes that are potentially causally related must be seen by all

processes in the same order. Concurrent writes may be seen in a

different order by different processes.

P1: W(x)a

P2: R(x)a W(x)b

P3: R(x)b R(x)a
P4: R(x)a R(x)b

(a)

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4: R(x)a R(x)b

(b)

Grouping operations

@ Accesses to synchronization variables are sequentially consistent.

@ No access to a synchronization variable is allowed to be

performed until all previous writes have completed everywhere.

@ No data access is allowed to be performed until all previous

accesses to synchronization variables have been performed.

Basic idea

You don't care that reads and writes of a series of operations are
immediately known to other processes. You just want the effect of the

series itself to be known.

10/41

Consistency & Replication 7.2 Data-Centric Consistency Models Consistency & Replication 7.2 Data-Centric Consistency Models

Grouping operations

P1: Acq(Lx) W(x)a Acq(Ly) W(y)b Rel(Lx) Rel(Ly)

P2: Acq(Lx) R(x)a R(y) NIL

P3: Acq(Ly) R(y)b

Observation

Weak consistency implies that we need to lock and unlock data

(implicitly or not).

What would be a convenient way of making this consistency more or

less transparent to programmers?

11/41

Consistency & Replication 7.3 Client-Centric Consistency Models Consistency & Replication 7.3 Client-Centric Consistency Models

Client-centric consistency models

Overview

@ System model

Monotonic reads

Read-your-writes

o
@ Monotonic writes
o
o

Write-follows-reads

Show how we can perhaps avoid systemwide consistency, by

concentrating on what specific clients want, instead of what should be

maintained by servers.

12/41

7.3 Glnt Geniic Consistency Models 7.3 Glent Geniic Consisency Models
Consistency for mobile users

Consider a distributed database to which you have access through

your notebook. Assume your notebook acts as a front end to the

database.

@ At location A you access the database doing reads and updates.
@ At location B you continue your work, but unless you access the

same server as the one at location A, you may detect

inconsistencies:

e your updates at A may not have yet been propagated to B
e you may be reading newer entries than the ones available at A

e your updates at B may eventually conflict with those at A

Consistency & Replication 7.3 Client-Centric Consistency Models 7.3 Client-Centric Consistency Models
Consistency for mobile users

Note

The only thing you really want is that the entries you updated and/or

read at A, are in B the way you left them in A. In that case, the

database will appear to be consistent to you.

Consistency & Replication 7.3 Client-Centric Consistency Models 7.3 Client-Centric Consistency Models
Basic architecture

Client moves to other location

and (transparently) connects to
other replica

@ Replicas need to maintain
c

lient-centric consistency

iy s

Wide-area network

_

5‘)\ Distributed and replicated database

Read and write operations
Portable computer

7:3 CllentCentric Consistency Models
Monotonic reads

Definition

If a process reads the value of a data item x, any successive read
operation on x by that process will always return that same or a more
recent value.

L1 WS(xy) R(x1) -,

L2: WS(X1;X5) “=R(xp)
L1 WS(xy) R(xg) =~~~
L2 wseer T “-R(x)

16/41

7.3 Client-Centric Consistency Models
Client-centric consistency: notation

@ WS(x[t]) is the set of write operations (at L;) that lead to version
x; of x (at time t)

@ WS(xi[ti]; xj[tz]) indicates that it is known that WS(x;[t;]) is part of
WS(x[z]).

@ Note: Parameter t is omitted from figures.

7.3 Clent-Centrc Consistency Models
Monotonic reads

Automatically reading your personal calendar updates from different
servers. Monotonic Reads guarantees that the user sees all updates,
no matter from which server the automatic reading takes place.

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency & Replication 7.3 Client-Centric Consistency Models

Reading (not modifying) incoming mail while you are on the move.
Each time you connect to a different e-mail server, that server fetches
(at least) all the updates from the server you previously visited.

18/41

7.3 Clent-Centri Consistency Models
Monotonic writes

Definition

A write operation by a process on a data item x is completed before
any successive write operation on x by the same process.

ETREE) R -

L2 WS(Xp) eeeeee- W(x,)
L1 W(Xq)-omomeon S
L2 I W(x,)

19/41

7:3 Clien-Centic Consistency Models
Monotonic writes

Updating a program at server Sy, and ensuring that all components on
which compilation and linking depends, are also placed at S,.

Maintaining versions of replicated files in the correct order everywhere
(propagate the previous version to the server where the newest
version is installed).

20/41

7.3 Clnt Gentic Consistency Models
Read your writes

Definition

The effect of a write operation by a process on data item x, will always
be seen by a successive read operation on x by the same process.

L %
L2 WS(X1iXp) =------ R(x,) Updating your Web page
and guaranteeing that your
_ Web browser shows the
L1 W(Xq)-mmne . -

- newest version instead of its
L2 WSExg) T eeeeee R(X5) cached copy.

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency & Replication 7.3 Client-Centric Consistency Models

20/41

21/41

7:3 CllentCentric Consistency Models
Writes follow reads

Definition

A write operation by a process on a data item x following a previous
read operation on x by the same process, is guaranteed to take place
on the same or a more recent value of x that was read.

Consistency & Replication 7.3 Client-Centric Consistency Models

L1: WS(xq) R(x1)-,

L2: WS(x4:x) S W(x,) See reactions to posted
articles only if you have the
original posting (a read

L1: WS(xy) RO -~ 77 “pulls in” the corresponding

L2 _ws(x) - W(xg) write operation).

22/41

Consistency & Replication 7.4 Replica Management

Distribution protocols

@ Replica server placement
@ Content replication and placement
@ Content distribution

23/41

Consistency & Replication 7.4 Replica Management

Replica placement

Figure out what the best K places are out of N possible locations.

@ Select best location out of N — K for which the average distance to
clients is minimal. Then choose the next best server. (Note: The
first chosen location minimizes the average distance to all clients.)
Computationally expensive.

@ Select the K-th largest autonomous system and place a server at
the best-connected host. Computationally expensive.

@ Position nodes in a d-dimensional geometric space, where
distance reflects latency. Identify the K regions with highest
density and place a server in every one. Computationally cheap.

Consistency & Replication 7.4 Replica Management

Consistency & Replication 7.4 Replica Management

Consistency & Replication 7.4 Replica Management Consistency & Replication 7.4 Replica Management

Content replication

Distinguish different processes
A process is capable of hosting a replica of an object or data:
@ Permanent replicas: Process/machine always having a replica
@ Server-initiated replica: Process that can dynamically host a
replica on request of another server in the data store
@ Client-initiated replica: Process that can dynamically host a
replica on request of a client (client cache)

Consistency & Replication 7.4 Replica Management Consistency & Replication 7.4 Replica Management

Content replication

N ~ —>» Server-initiated replication

.. ---» Client-initiated replication
Permanent
replicas

Server-initiated replicas

26/41

Consistency & Replication 7.4 Replica Management Consistency & Replication 7.4 Replica Management

Server-initiated replicas

O
Server without ;

copy of file F y

Client Server with
Q copy of F
G @ File F

Server Q counts access from C; and
C> as if they would come from P

@ Keep track of access counts per file, aggregated by considering

server closest to requesting clients

@ Number of accesses drops below threshold D = drop file
@ Number of accesses exceeds threshold R = replicate file
@ Number of access between D and R = migrate file

27/41

7.4 Repica Management 7.4 Repica Management
Content distribution

Consider only a client-server combination:

@ Propagate only notification/invalidation of update (often used for

caches)
@ Transfer data from one copy to another (distributed databases):

passive replication

@ Propagate the update operation to other copies: active replication

Note

No single approach is the best, but depends highly on available
bandwidth and read-to-write ratio at replicas.

28/41

Consistency & Replication 7.4 Replica Management 7.4 Replica Management
Content distribution: client/server system

@ Pushing updates: server-initiated approach, in which update is

propagated regardless whether target asked for it.

@ Pulling updates: client-initiated approach, in which client requests

to be updated.

Issue | Push-based Pull-based

1: List of client caches None

2: Update (and possibly fetch update) | Poll and update
3: Immediate (or fetch-update time) Fetch-update time

1: State at server

2: Messages to be exchanged

3: Response time at the client

29/41

Consistency & Replication 7.4 Replica Management Consistency & Replication 7.4 Replica Management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases:

A contract in which the server promises to push updates to the client

until the lease expires.

30/41

7.4 Repica Management 7.4 Repica Management
Content distribution

Make lease expiration time dependent on system’s behavior (adaptive

leases):

@ Age-based leases: An object that hasn’t changed for a long time, will not

change in the near future, so provide a long-lasting lease

@ Renewal-frequency based leases: The more often a client requests a

specific object, the longer the expiration time for that client (for that
object) will be

@ State-based leases: The more loaded a server is, the shorter the

expiration times become

Why are we doing all this?

31/41

Consistency & Replication 7.5 Consistency Protocols 7.5 Consistency Protocols
Consistency protocols

Consistency protocol

Describes the implementation of a specific consistency model.

@ Continuous consistency

@ Primary-based protocols

@ Replicated-write protocols

32/41

Consistency & Replication 7.5 Consistency Protocols Consistency & Replication 7.5 Consistency Protocols

Continuous consistency: Numerical errors

Principal operation

@ Every server S; has a log, denoted as /log(S;).

@ Consider a data item x and let weight(W) denote the numerical

change in its value after a write operation W. Assume that

YW : weight(W) >0

@ W is initially forwarded to one of the N replicas, denoted as

origin(W). TWIi,j] are the writes executed by server S; that

originated from S;:

TWI[i,j] = Y {weight(W)|origin(W) = S; & W < log(S))}

75 Gonsisteney Protocols
Continuous consistency: Numerical errors

Note
Actual value v(t) of x:

N
V(t) = Vipjt + Z TW[k,k]
k=1

value v; of x at replica i/:

N
Vi=Vinir + Y, TW[i,K]

k=1

Consistency & Replication 7.5 Consistency Protocols

Continuous consistency: Numerical errors

Problem
We need to ensure that v(t) — v; < §; for every server S;.

Approach

Let every server Sk maintain a view TW]i,j] of what it believes is the
value of TW[i,j]. This information can be gossiped when an update is
propagated.

Note
0 < TWK[i,j] < TW[i,j] < TW[j,j]

35/41

Consistency & Replication 7.5 Consistency Protocols

Continuous consistency: Numerical errors

Sk sends operations from its log to S; when it sees that TW|i, k] is
getting too far from TW[k, k], in particular, when

TWIk, k] — TWi[i, k] > &/(N—1)

To what extent are we being pessimistic here: where does 6;/(N—1)
come from?

Note

Staleness can be done analogously, by essentially keeping track of
what has been seen last from S; (see book).

36/41

Consistency & Replication 7.5 Consistency Protocols

Consistency & Replication 7.5 Consistency Protocols

34/41

Consistency & Replication 7.5 Consistency Protocols

36/41

75 Consisency Protocls
Primary-based protocols

Primary-backup protocol

Client Client

Primary server

for item x
R1 TRZ

e
— >

P

Backup server

W1| |W5

Data store

w4
—
«——
N
w2 w3
w4

R1. Read request
R2. Response to read

W1. Write request

W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update

WS5. Acknowledge write completed

Consistency & Replication 7.5 Consistency Protocols

Consistency & Replication 7.5 Consistency Protocols

Primary-based protocols

Example primary-backup protocol

Traditionally applied in distributed databases and file systems that
require a high degree of fault tolerance. Replicas are often placed on
same LAN.

Consistency & Replication 7.5 Consistency Protocols

y & Replication 7.5 Consistency Protocols

Primary-based protocols

Primary-backup protocol with local writes

Client Client
Old primary New primary

for item x for item x
R1| |R2 w1 TW3
v
W5 W5
\WA/ .
w2

W1. Write request

W2. Move item x to new primary
W3. Acknowledge write completed
WA4. Tell backups to update

WS5. Acknowledge update

Backup server

Data store

R1. Read request
R2. Response to read

Consistency & Replication 7.5 Consistency Protocols

38/41

39/41

Consistency & Replication 7.5 Consistency Protocols

75 Consisency Protocos
Primary-based protocols

Example primary-backup protocol with local writes

Mobile computing in disconnected mode (ship all relevant files to user

before disconnecting, and update later on).

40/41

nsistency & Replication 7.5 Consistency Protocols

7.5 Consistency Protocols
Replicated-write protocols

Quorum-based protocols

Ensure that each operation is carried out in such a way that a majority vote is

established: distinguish read quorum and write quorum:

Read quorum

required: Ng+ Ny > N and Ny > N/2

41/41

