
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 06: Synchronization

Version: November 19, 2012

1 / 38

Distributed Algorithms 6.1 Clock Synchronization

Clock Synchronization

Physical clocks
Logical clocks
Vector clocks

2 / 38

Distributed Algorithms 6.1 Clock Synchronization

2 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution
Universal Coordinated Time (UTC):

Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50
cesium-clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short wave radio and satellite. Satellites can give
an accuracy of about ±0.5 ms.

3 / 38

Distributed Algorithms 6.1 Clock Synchronization

3 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Suppose we have a distributed system with a UTC-receiver
somewhere in it⇒ we still have to distribute its time to each machine.

Basic principle
Every machine has a timer that generates an interrupt H times per
second.
There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by Cp(t), where t is UTC time.
Ideally, we have that for each machine p, Cp(t) = t , or, in other
words, dC/dt = 1.

4 / 38

Distributed Algorithms 6.1 Clock Synchronization

4 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Fa
st

 c
lo

ck

Per
fe

ct
clo

ck

Slow clock

Clock time, C

dC
dt

> 1
dC
dt

= 1

dC
dt

< 1

UTC, t

In practice: 1−ρ ≤ dC
dt ≤ 1 + ρ.

Goal
Never let two clocks in any system differ by more than δ time units⇒
synchronize at least every δ/(2ρ) seconds.

5 / 38

Distributed Algorithms 6.1 Clock Synchronization

5 / 38

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Basic idea
You can get an accurate account of time as a side-effect of GPS.

Height

x

(-7.6,7.6)

r = 11.4

(17.8,17.8)

r = 19

(4.5,28.5)

r = 25.9

6 / 38

Distributed Algorithms 6.1 Clock Synchronization

6 / 38

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Problem
Assuming that the clocks of the satellites are accurate and
synchronized:

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of synch with the satellite

7 / 38

Distributed Algorithms 6.1 Clock Synchronization

7 / 38

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Principal operation

∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i
(c is speed of light)
Real distance is

di = c∆i −c∆r =
√

(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

8 / 38

Distributed Algorithms 6.1 Clock Synchronization

8 / 38

Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle I
Every machine asks a time server for the accurate time at least once
every δ/(2ρ) seconds (Network Time Protocol).

Note
Okay, but you need an accurate measure of round trip delay, including
interrupt handling and processing incoming messages.

9 / 38

Distributed Algorithms 6.1 Clock Synchronization

9 / 38

Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle II
Let the time server scan all machines periodically, calculate an
average, and inform each machine how it should adjust its time relative
to its present time.

Note
Okay, you’ll probably get every machine in sync. You don’t even need
to propagate UTC time.

Fundamental
You’ll have to take into account that setting the time back is never
allowed⇒ smooth adjustments.

10 / 38

Distributed Algorithms 6.1 Clock Synchronization

10 / 38

Distributed Algorithms 6.2 Logical Clocks

The Happened-before relationship

Problem
We first need to introduce a notion of ordering before we can order anything.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a→ b.
If a is the sending of a message, and b is the receipt of that message,
then a→ b
If a→ b and b→ c, then a→ c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

11 / 38

Distributed Algorithms 6.2 Logical Clocks

11 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Solution
Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.

12 / 38

Distributed Algorithms 6.2 Logical Clocks

12 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Solution
Each process Pi maintains a local counter Ci and adjusts this counter
according to the following rules:

1: For any two successive events that take place within Pi , Ci is
incremented by 1.

2: Each time a message m is sent by process Pi , the message receives a
timestamp ts(m) = Ci .

3: Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes

Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

13 / 38

Distributed Algorithms 6.2 Logical Clocks

13 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m1

m2

m3

m4

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

m1

m2

m3

m4

P adjusts

its clock

P adjusts

its clock

(b)(a)

P1 P2 P3 P1 P2 P3

2

1

14 / 38

Distributed Algorithms 6.2 Logical Clocks

14 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

Note
Adjustments take place in the middleware layer

Application layer

Middleware layer

Network layer

Message is delivered to application

Adjust local clock

Message is received

Adjust local clock

and timestamp message

Application sends message

Middleware sends message

15 / 38

Distributed Algorithms 6.2 Logical Clocks

15 / 38

Distributed Algorithms 6.2 Logical Clocks

Example: Totally ordered multicast

Problem
We sometimes need to guarantee that concurrent updates on a replicated
database are seen in the same order everywhere:

P1 adds $100 to an account (initial value: $1000)
P2 increments account by 1%
There are two replicas

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Result
In absence of proper synchronization:
replica #1← $1111, while replica #2← $1110.

16 / 38

Distributed Algorithms 6.2 Logical Clocks

16 / 38

Distributed Algorithms 6.2 Logical Clocks

Example: Totally ordered multicast

Solution

Process Pi sends timestamped message msgi to all others. The
message itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message msgi to its application if:

(1) msgi is at the head of queuej
(2) for each process Pk , there is a message msgk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

17 / 38

Distributed Algorithms 6.2 Logical Clocks

17 / 38

Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally
preceded b

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

m1
m2

m3

m5

m4

P1 P2 P3

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally precedes b.

18 / 38

Distributed Algorithms 6.2 Logical Clocks

18 / 38

Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Solution

Each process Pi has an array VCi [1..n], where VCi [j] denotes the
number of events that process Pi knows have taken place at process Pj .
When Pi sends a message m, it adds 1 to VCi [i], and sends VCi along
with m as vector timestamp vt(m). Result: upon arrival, recipient knows
Pi ’s timestamp.
When a process Pj delivers a message m that it received from Pi with
vector timestamp ts(m), it

(1) updates each VCj [k] to max{VCj [k], ts(m)[k]}
(2) increments VCj [j] by 1.

Question
What does VCi [j] = k mean in terms of messages sent and received?

19 / 38

Distributed Algorithms 6.2 Logical Clocks

19 / 38

Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts”
VCj when receiving a message (i.e., effectively does not change
VCj [j]).

Pj postpones delivery of m until:

ts(m)[i] = VCj [i] + 1.
ts(m)[k]≤ VCj [k] for k 6= i .

20 / 38

Distributed Algorithms 6.2 Logical Clocks

20 / 38

Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Example

P0

P1

P2

 VC = (0,0,0)2 VC = (1,0,0)2

VC = (1,1,0)1

VC = (1,0,0)0 VC = (1,1,0)0

VC = (1,1,0)2

m

m*

Example
Take VC2 = [0,2,2], ts(m) = [1,3,0] from P0. What information does P2
have, and what will it do when receiving m (from P0)?

21 / 38

Distributed Algorithms 6.2 Logical Clocks

21 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion

Problem
A number of processes in a distributed system want exclusive access
to some resource.

Basic solutions
Via a centralized server.
Completely decentralized, using a peer-to-peer system.
Completely distributed, with no topology imposed.
Completely distributed along a (logical) ring.

22 / 38

Distributed Algorithms 6.3 Mutual Exclusion

22 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: centralized

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request
Request ReleaseOK

OK

Coordinator

Queue is
empty

No reply

23 / 38

Distributed Algorithms 6.3 Mutual Exclusion

23 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Decentralized mutual exclusion

Principle
Assume every resource is replicated n times, with each replica having
its own coordinator⇒ access requires a majority vote from m > n/2
coordinators. A coordinator always responds immediately to a request.

Assumption
When a coordinator crashes, it will recover quickly, but will have
forgotten about permissions it had granted.

24 / 38

Distributed Algorithms 6.3 Mutual Exclusion

24 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Decentralized mutual exclusion

Issue
How robust is this system? Let p = ∆t/T denote the probability that a
coordinator crashes and recovers in a period ∆t while having an
average lifetime T ⇒ probability that k out m coordinators reset:

P[violation] = pv =
n

∑
k=2m−n

(
m
k

)
pk (1−p)m−k

With p = 0.001, n = 32, m = 0.75n, pv < 10−40

25 / 38

Distributed Algorithms 6.3 Mutual Exclusion

25 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion Ricart & Agrawala

Principle

The same as Lamport except that acknowledgments aren’t sent. Instead,
replies (i.e. grants) are sent only when

The receiving process has no interest in the shared resource; or
The receiving process is waiting for the resource, but has lower priority
(known through comparison of timestamps).
In all other cases, reply is deferred, implying some more local
administration.

0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Accesses

resource

Accesses

resource

(a) (b) (c)

26 / 38

Distributed Algorithms 6.3 Mutual Exclusion

26 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed
between them. The one that holds the token is allowed to enter the
critical region (if it wants to).

1

00

2

3

4

5

6

7

2 4 7 1 6 53

(a) (b)

27 / 38

Distributed Algorithms 6.3 Mutual Exclusion

27 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: comparison

Algorithm # msgs per Delay before entry Problems
entry/exit (in msg times)

Centralized 3 2 Coordinator crash
Decentralized 2mk + m, k = 1,2,... 2mk Starvation, low eff.
Distributed 2 (n – 1) 2 (n – 1) Crash of any process
Token ring 1 to ∞ 0 to n – 1 Lost token, proc. crash

28 / 38

Distributed Algorithms 6.3 Mutual Exclusion

28 / 38

Distributed Algorithms 6.4 Node Positioning

Global positioning of nodes

Problem
How can a single node efficiently estimate the latency between any
two other nodes in a distributed system?

Solution
Construct a geometric overlay network, in which the distance d(P,Q)
reflects the actual latency between P and Q.

29 / 38

Distributed Algorithms 6.4 Node Positioning

29 / 38

Distributed Algorithms 6.4 Node Positioning

Computing position

Observation
A node P needs k + 1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

P

(x ,y)3 3

(x ,y)2 2

(x ,y)1 1

3d

2d

1d

Solution
P needs to solve three
equations in two unknowns
(xP ,yP):

di =
√

(xi −xP)2 + (yi −yP)2

30 / 38

Distributed Algorithms 6.4 Node Positioning

30 / 38

Distributed Algorithms 6.4 Node Positioning

Computing position

Problems

measured latencies to
landmarks fluctuate
computed distances will not
even be consistent:

P
1 2 3 4

Q R

3.2

1.0 2.0

Solution
Let the L landmarks measure their pairwise latencies d(bi ,bj) and let each
node P minimize

L

∑
i=1

[
d(bi ,P)− d̂(bi ,P)

d(bi ,P)

]2

where d̂(bi ,P) denotes the distance to landmark bi given a computed
coordinate for P.

31 / 38

Distributed Algorithms 6.4 Node Positioning

31 / 38

Distributed Algorithms 6.5 Election Algorithms

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question
is how to select this special process dynamically.

Note
In many systems the coordinator is chosen by hand (e.g. file servers). This
leads to centralized solutions⇒ single point of failure.

Question
If a coordinator is chosen dynamically, to what extent can we speak about a
centralized or distributed solution?

Question
Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

32 / 38

Distributed Algorithms 6.5 Election Algorithms

32 / 38

Distributed Algorithms 6.5 Election Algorithms

Election by bullying

Principle
Each process has an associated priority (weight). The process with
the highest priority should always be elected as the coordinator. Issue
How do we find the heaviest process?

Any process can just start an election by sending an election
message to all other processes (assuming you don’t know the
weights of the others).
If a process Pheavy receives an election message from a lighter
process Plight, it sends a take-over message to Plight. Plight is out of
the race.
If a process doesn’t get a take-over message back, it wins, and
sends a victory message to all other processes.

33 / 38

Distributed Algorithms 6.5 Election Algorithms

33 / 38

Distributed Algorithms 6.5 Election Algorithms

Election by bullying

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

Election

E
le

ct
io

nElection

Election

OK

OK

Previous coordinator
has crashed

Elec
tio

n

Election

1

2

4

0

5

6

3

7

OK
Coordinator

(a) (b) (c)

(d) (e)

34 / 38

Distributed Algorithms 6.5 Election Algorithms

34 / 38

Distributed Algorithms 6.5 Election Algorithms

Election in a ring

Principle
Process priority is obtained by organizing processes into a (logical)
ring. Process with the highest priority should be elected as
coordinator.

Any process can start an election by sending an election message
to its successor. If a successor is down, the message is passed
on to the next successor.
If a message is passed on, the sender adds itself to the list. When
it gets back to the initiator, everyone had a chance to make its
presence known.
The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the highest
priority is elected as coordinator.

35 / 38

Distributed Algorithms 6.5 Election Algorithms

35 / 38

Distributed Algorithms 6.5 Election Algorithms

Election in a ring

Question
Does it matter if two processes initiate an election?

Question
What happens if a process crashes during the election?

36 / 38

Distributed Algorithms 6.5 Election Algorithms

36 / 38

Distributed Algorithms 6.5 Election Algorithms

Superpeer election

Issue
How can we select superpeers such that:

Normal nodes have low-latency access to superpeers
Superpeers are evenly distributed across the overlay network
There is be a predefined fraction of superpeers
Each superpeer should not need to serve more than a fixed
number of normal nodes

37 / 38

Distributed Algorithms 6.5 Election Algorithms

37 / 38

Distributed Algorithms 6.5 Election Algorithms

Superpeer election

DHTs
Reserve a fixed part of the ID space for superpeers. Example: if S
superpeers are needed for a system that uses m-bit identifiers, simply
reserve the k = dlog2 Se leftmost bits for superpeers. With N nodes,
we’ll have, on average, 2k−mN superpeers.

Routing to superpeer
Send message for key p to node responsible for
p AND 11 · · ·11︸ ︷︷ ︸

k

00 · · ·00︸ ︷︷ ︸
m−k

38 / 38

Distributed Algorithms 6.5 Election Algorithms

38 / 38

