
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 01: Introduction

Version: August 27, 2012



Introduction 1.1 Definition

Distributed System: Definition

A distributed system is

a collection of autonomous computing elements that appears
to its users as a single coherent system

Two aspects: (1) independent computing elements and
(2) single system ⇒ middleware.

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Appl. A Application B Appl. C

Distributed-system layer (middleware)

Computer 1 Computer 2 Computer 3 Computer 4

Same interface everywhere

Network

2 / 28



Introduction 1.2 Goals

Goals of Distributed Systems

Making resources available
Distribution transparency
Openness
Scalability

3 / 28



Introduction 1.2 Goals

Distribution transparency

Transp. Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located
Relocation Hide that an object may be moved to another location

while in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several

independent users
Failure Hide the failure and recovery of an object

Note
Distribution transparency is a nice a goal, but achieving it is a different story.

4 / 28



Introduction 1.2 Goals

Distribution transparency

Transp. Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located
Relocation Hide that an object may be moved to another location

while in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several

independent users
Failure Hide the failure and recovery of an object

Note
Distribution transparency is a nice a goal, but achieving it is a different story.

4 / 28



Introduction 1.2 Goals

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

Users may be located in different continents
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault tolerance

5 / 28



Introduction 1.2 Goals

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

Users may be located in different continents
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault tolerance

5 / 28



Introduction 1.2 Goals

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

Users may be located in different continents
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault tolerance

5 / 28



Introduction 1.2 Goals

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

Users may be located in different continents
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault tolerance

5 / 28



Introduction 1.2 Goals

Openness of distributed systems

Open distributed system
Be able to interact with services from other open systems, irrespective
of the underlying environment:

Systems should conform to well-defined interfaces
Systems should support portability of applications
Systems should easily interoperate

Achieving openness
At least make the distributed system independent from heterogeneity
of the underlying environment:

Hardware
Platforms
Languages

6 / 28



Introduction 1.2 Goals

Openness of distributed systems

Open distributed system
Be able to interact with services from other open systems, irrespective
of the underlying environment:

Systems should conform to well-defined interfaces
Systems should support portability of applications
Systems should easily interoperate

Achieving openness
At least make the distributed system independent from heterogeneity
of the underlying environment:

Hardware
Platforms
Languages

6 / 28



Introduction 1.2 Goals

Policies versus mechanisms

Implementing openness

Requires support for different policies:

What level of consistency do we require for client-cached data?
Which operations do we allow downloaded code to perform?
Which QoS requirements do we adjust in the face of varying bandwidth?
What level of secrecy do we require for communication?

Implementing openness

Ideally, a distributed system provides only mechanisms:

Allow (dynamic) setting of caching policies
Support different levels of trust for mobile code
Provide adjustable QoS parameters per data stream
Offer different encryption algorithms

7 / 28



Introduction 1.2 Goals

Policies versus mechanisms

Implementing openness

Requires support for different policies:

What level of consistency do we require for client-cached data?
Which operations do we allow downloaded code to perform?
Which QoS requirements do we adjust in the face of varying bandwidth?
What level of secrecy do we require for communication?

Implementing openness

Ideally, a distributed system provides only mechanisms:

Allow (dynamic) setting of caching policies
Support different levels of trust for mobile code
Provide adjustable QoS parameters per data stream
Offer different encryption algorithms

7 / 28



Introduction 1.2 Goals

Scale in distributed systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability

At least three components:

Number of users and/or processes (size scalability)
Maximum distance between nodes (geographical scalability)
Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geographical and
administrative scalability.

8 / 28



Introduction 1.2 Goals

Scale in distributed systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability

At least three components:

Number of users and/or processes (size scalability)
Maximum distance between nodes (geographical scalability)
Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geographical and
administrative scalability.

8 / 28



Introduction 1.2 Goals

Scale in distributed systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability

At least three components:

Number of users and/or processes (size scalability)
Maximum distance between nodes (geographical scalability)
Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geographical and
administrative scalability.

8 / 28



Introduction 1.2 Goals

Techniques for scaling

Hide communication latencies
Avoid waiting for responses; do something else:

Make use of asynchronous communication
Have separate handler for incoming response
Problem: not every application fits this model

9 / 28



Introduction 1.2 Goals

Techniques for scaling

Distribution
Partition data and computations across multiple machines:

Move computations to clients (Java applets)
Decentralized naming services (DNS)
Decentralized information systems (WWW)

10 / 28



Introduction 1.2 Goals

Techniques for scaling

Replication/caching
Make copies of data available at different machines:

Replicated file servers and databases
Mirrored Web sites
Web caches (in browsers and proxies)
File caching (at server and client)

11 / 28



Introduction 1.2 Goals

Scaling – The problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.
Always keeping copies consistent and in a general way requires
global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12 / 28



Introduction 1.2 Goals

Scaling – The problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.
Always keeping copies consistent and in a general way requires
global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12 / 28



Introduction 1.2 Goals

Scaling – The problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.
Always keeping copies consistent and in a general way requires
global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12 / 28



Introduction 1.2 Goals

Scaling – The problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.
Always keeping copies consistent and in a general way requires
global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12 / 28



Introduction 1.2 Goals

Scaling – The problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.
Always keeping copies consistent and in a general way requires
global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

13 / 28



Introduction 1.3 Types of distributed systems

Types of distributed systems

Distributed computing systems
Distributed information systems
Distributed pervasive systems

14 / 28



Introduction 1.3 Types of distributed systems

Distributed computing systems

Observation
Many distributed systems are configured for High-Performance
Computing

Cluster Computing
Essentially a group of high-end systems connected through a LAN:

Homogeneous: same OS, near-identical hardware
Single managing node

15 / 28



Introduction 1.3 Types of distributed systems

Distributed computing systems

Local OSLocal OS Local OS Local OS

Standard network

Component

of


parallel

application

Component

of


parallel

application

Component

of


parallel

applicationParallel libs

Management

application

High-speed network

Remote access

network

Master node Compute node Compute node Compute node

16 / 28



Introduction 1.3 Types of distributed systems

Distributed computing systems

Grid Computing
The next step: lots of nodes from everywhere:

Heterogeneous
Dispersed across several organizations
Can easily span a wide-area network

Note
To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that will allow
for authorization on resource allocation.

17 / 28



Introduction 1.3 Types of distributed systems

Distributed computing systems: Clouds

Application

Infrastructure

Computation (VM), storage (block)

Hardware

Platforms

Software framework (Java/Python/.Net)
Storage (DB, File)

In
fr

a
s
tr

u
c
tu

re

a
a
 S

v
c

P
la

tf
o
rm

a
a
 S

v
c

S
o
ft
w

a
re

a
a

 S
v
c Google Apps

YouT ube
Flickr

MS Azure

Amazon S3

Amazon EC2

DatacentersCPU, memory, disk, bandwidth

Web services, multimedia, business apps

18 / 28



Introduction 1.3 Types of distributed systems

Distributed computing systems: Clouds

Cloud computing
Make a distinction between four layers:

Hardware: Processors, routers, power and cooling systems.
Customers normally never get to see these.
Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual
servers.
Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally
created) files to be organized and stored in so-called buckets.
Application: Actual applications, such as office suites (text
processors, spreadsheet applications, presentation applications).
Comparable to the suite of apps shipped with OSes.

19 / 28



Introduction 1.3 Types of distributed systems

Distributed Information Systems

Observation
The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN TRANSACTION(server, transaction)
READ(transaction, file-1, data)
WRITE(transaction, file-2, data)
newData := MODIFIED(data)
IF WRONG(newData) THEN

ABORT TRANSACTION(transaction)
ELSE

WRITE(transaction, file-2, newData)
END TRANSACTION(transaction)

END IF

Note
Transactions form an atomic operation.

20 / 28



Introduction 1.3 Types of distributed systems

Distributed Information Systems

Observation
The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN TRANSACTION(server, transaction)
READ(transaction, file-1, data)
WRITE(transaction, file-2, data)
newData := MODIFIED(data)
IF WRONG(newData) THEN

ABORT TRANSACTION(transaction)
ELSE

WRITE(transaction, file-2, newData)
END TRANSACTION(transaction)

END IF

Note
Transactions form an atomic operation.

20 / 28



Introduction 1.3 Types of distributed systems

Distributed information systems: Transactions

Model
A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T , or
after T , but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21 / 28



Introduction 1.3 Types of distributed systems

Distributed information systems: Transactions

Model
A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T , or
after T , but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21 / 28



Introduction 1.3 Types of distributed systems

Distributed information systems: Transactions

Model
A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T , or
after T , but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21 / 28



Introduction 1.3 Types of distributed systems

Distributed information systems: Transactions

Model
A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T , or
after T , but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21 / 28



Introduction 1.3 Types of distributed systems

Distributed information systems: Transactions

Model
A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T , or
after T , but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21 / 28



Introduction 1.3 Types of distributed systems

Transaction processing monitor

Observation
In many cases, the data involved in a transaction is distributed across
several servers. A TP Monitor is responsible for coordinating the
execution of a transaction

TP monitor

Server

Server

Server

Client

application

Requests

Reply

Request

Request

Request

Reply

Reply

Reply

Transaction

22 / 28



Introduction 1.3 Types of distributed systems

Distr. info. systems: Enterprise application integration

Problem
A TP monitor doesn’t separate apps from their databases. Also
needed are facilities for direct communication between apps.

Server-side

application

Server-side

application

Server-side

application

Client

application

Client

application

Communication middleware

Remote Procedure Call (RPC)
Message-Oriented Middleware (MOM)

23 / 28



Introduction 1.3 Types of distributed systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes
Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.
Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.
Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

24 / 28



Introduction 1.3 Types of distributed systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes
Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.
Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.
Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

24 / 28



Introduction 1.3 Types of distributed systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes
Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.
Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.
Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

24 / 28



Introduction 1.3 Types of distributed systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes
Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.
Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.
Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

24 / 28



Introduction 1.3 Types of distributed systems

Ubiquitous computing systems

Basic characteristics
(Distribution) Devices are networked, distributed, and accessible
in a transparent manner
(Interaction) Interaction between users and devices is highly
unobtrusive
(Context awareness) The system is aware of a user’s context in
order to optimize interaction
(Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed
(Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25 / 28



Introduction 1.3 Types of distributed systems

Ubiquitous computing systems

Basic characteristics
(Distribution) Devices are networked, distributed, and accessible
in a transparent manner
(Interaction) Interaction between users and devices is highly
unobtrusive
(Context awareness) The system is aware of a user’s context in
order to optimize interaction
(Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed
(Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25 / 28



Introduction 1.3 Types of distributed systems

Ubiquitous computing systems

Basic characteristics
(Distribution) Devices are networked, distributed, and accessible
in a transparent manner
(Interaction) Interaction between users and devices is highly
unobtrusive
(Context awareness) The system is aware of a user’s context in
order to optimize interaction
(Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed
(Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25 / 28



Introduction 1.3 Types of distributed systems

Ubiquitous computing systems

Basic characteristics
(Distribution) Devices are networked, distributed, and accessible
in a transparent manner
(Interaction) Interaction between users and devices is highly
unobtrusive
(Context awareness) The system is aware of a user’s context in
order to optimize interaction
(Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed
(Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25 / 28



Introduction 1.3 Types of distributed systems

Ubiquitous computing systems

Basic characteristics
(Distribution) Devices are networked, distributed, and accessible
in a transparent manner
(Interaction) Interaction between users and devices is highly
unobtrusive
(Context awareness) The system is aware of a user’s context in
order to optimize interaction
(Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed
(Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25 / 28



Introduction 1.3 Types of distributed systems

Mobile computing systems

Observation
Mobile computing systems are generally a subclass of ubiquitous
computing systems and meet all of the five requirements.

Typical characteristics
Many different types of mobile divices: smart phones, remote
controls, car equipment, and so on
Wireless communication
Devices may continuously change their location ⇒

setting up a route may be problematic, as routes can change
frequently
devices may easily be temporarily disconnected ⇒
disruption-tolerant networks

26 / 28



Introduction 1.3 Types of distributed systems

Sensor networks

Characteristics
The nodes to which sensors are attached are:

Many (10s-1000s)
Simple (small memory/compute/communication capacity)
Often battery-powered (or even battery-less)

27 / 28



Introduction 1.3 Types of distributed systems

Sensor networks as distributed systems

Operator's site

Sensor network

Sensor data

is sent directly


to operator

Operator's site

Sensor network

Query

Sensors

send only

answers

Each sensor

can process and


store data

(a)

(b) 28 / 28


	Introduction
	1.1 Definition
	1.2 Goals
	1.3 Types of distributed systems


