Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 06: Synchronization

Version: November 19, 2012

vrije Universiteit amsterdam Jﬁb

6.1 Clock Synchonization
Clock Synchronization

@ Physical clocks
@ Logical clocks
@ Vector clocks

6.1 Clock Synchonization
Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Universal Coordinated Time (UTC):

M —

@ Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).

@ At present, the real time is taken as the average of some 50
cesium-clocks around the world.

@ Introduces a leap second from time to time to compensate that days are
getting longer.

UTC is broadcast through short wave radio and satellite. Satellites can give
an accuracy of about 0.5 ms.

Distributed Algorithms 6.1 Clock Synchronization

Distributed Algorithms 6.1 Clock Synchronization

Distributed Algorithms 6.1 Clock Synchronization Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem

Suppose we have a distributed system with a UTC-receiver
somewhere in it = we still have to distribute its time to each machine.

Basic principle

@ Every machine has a timer that generates an interrupt H times per

second.

@ There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by Cp(t), where tis UTC time.

@ Ideally, we have that for each machine p, Cy(t) =1, or, in other

words, dC/dt = 1.

Distributed Algorithms 6.1 Clock Synchronization Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

UTC, t

. dc
In practice: 1 —p <<% <1+p.

Never let two clocks in any system differ by more than o time units =

synchronize at least every 6/(2p) seconds.

6.1 Clook Synchronization 6.1 Clock Synchronization
Global positioning system

Basic idea
You can get an accurate account of time as a side-effect of GPS.

Height

e @5285)

(17.8,17.8)

)
@

6.1 Clook Synchronization
Global positioning system

Assuming that the clocks of the satellites are accurate and
synchronized:
@ [t takes a while before a signal reaches the receiver
@ The receiver’s clock is definitely out of synch with the satellite

~
@
3

6.1 Clock Synchronization
Global positioning system

Principal operation

@ A,: unknown deviation of the receiver’s clock.

Xr, Yr, Zr: unknown coordinates of the receiver.

T;: timestamp on a message from satellite i

Aj = (Thow — T;) + A;: measured delay of the message sent by satellite i.

Measured distance to satellite i: ¢ x A;
(c is speed of light)
Real distance is

di=chj—chr= \/(xi =X 2+ (Vi—yr)?+(zi— z)?

Distributed Algorithms 6.1 Clock Synchronization

Distributed Algorithms 6.1 Clock Synchronization

Observation
4 satellites = 4 equations in 4 unknowns (with A, as one of them)

8/38

6.1 Clock Synchrorization
Clock synchronization principles

Every machine asks a time server for the accurate time at least once
every 8/(2p) seconds (Network Time Protocol).

Note

Okay, but you need an accurate measure of round trip delay, including
interrupt handling and processing incoming messages.

Distributed Algorithms 6.1 Clock Synchronization

Distributed Algorithms 6.1 Clock Synchronization Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle Il

Let the time server scan all machines periodically, calculate an

average, and inform each machine how it should adjust its time relative

to its present time.

Note

Okay, you'll probably get every machine in sync. You don’t even need

to propagate UTC time.

Fundamental

You'll have to take into account that setting the time back is never

allowed = smooth adjustments.

10/38

6.2 Logieal Clocks 62 Logical Clooks
The Happened-before relationship

Problem
We first need to introduce a notion of ordering before we can order anything. J

The relation

@ If aand b are two events in the same process, and a comes before b,
then a— b.

@ If ais the sending of a message, and b is the receipt of that message,
thena— b

@ Ifa—bandb— c,thena—c

Note

This introduces a partial ordering of events in a system with concurrently

operating processes.

62 Logial Clocks 62 LogiealClocks
Logical clocks

Problem

How do we maintain a global view on the system’s behavior that is consistent

with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If aand b are two events in the same process, and a — b, then we

demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that

message, then also C(a) < C(b).

Problem

How to attach a timestamp to an event when there’s no global clock =

maintain a consistent set of logical clocks, one per process.

Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Each process P; maintains a local counter C; and adjusts this counter
according to the following rules:

1: For any two successive events that take place within P;, C; is
incremented by 1.

2: Each time a message m is sent by process P;, the message receives a
timestamp ts(m) = C;.

3: Whenever a message m is received by a process P}, P; adjusts its local
counter C; to max{C;, ts(m)}; then executes step 1 before passing m to
the application.

@ Property P1 is satisfied by (1); Property P2 by (2) and (3).
@ It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

Distributed Algorithms 6.2 Logical Clocks

Logical clocks — example

Py P, P3 Py P, P3
[o] [9] [o] [9] [o] 0
6l m |8 10 6l m |8 10
is[s % i3] i 2
18 24| m, [30 18 241 m, [30
54 B ao 54] 4o
30 40 50 30| P2 adjusts [40 50
36 48 60 36| its clock |48 60
a2 s/« s |70 a2 e |70
48 64 80 48 69 80
saf e |72 90 (ot |77 90
160 (80 (200 L76 p, adjusts[85] (00|
its clock
@ ®

Distributed Algorithms 6.2 Logical Clocks

Logical clocks — example

Note
Adjustments take place in the middleware layer

Distributed Algorithms 6.2 Logical Clocks

Distributed Algorithms 6.2 Logical Clocks

@

@

Distributed Algorithms 6.2 Logical Clocks

Application layer

Message is delivered to application

Application sends message ~

Adjust local clock
and timestamp message

Adjust local clock Middleware layer

Message is received

Network layer

15/38

62 Logial Clocks
Example: Totally ordered multicast

Problem

We sometimes need to guarantee that concurrent updates on a replicated

database are seen in the same order everywhere:
@ Py adds $100 to an account (initial value: $1000)
@ P, increments account by 1%
@ There are two replicas

Distributed Algorithms 6.2 Logical Clocks

% Updater Update 2__ ,%

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

In absence of proper synchronization:
replica #1 + $1111, while replica #2 < $1110.

6.2 LogiealClocks
Example: Totally ordered multicast

@ Process P; sends timestamped message msg; to all others. The
message itself is put in a local queue queue;.

@ Any incoming message at P; is queued in queue;, according to its
timestamp, and acknowledged to every other process.

Distributed Algorithms 6.2 Logical Clocks

P; passes a message msg; to its application if:

(1) msg; is at the head of queue;

timestamp.

(2) for each process P, there is a message msgy in queue; with a larger

Note
We are assuming that communication is reliable and FIFO ordered.

6.2 Logical Clocks
Vector clocks

Observation

Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally
preceded b

Distributed Algorithms 6.2 Logical Clocks

Py Py Py

0. 0. 0.

3| is| M |20 Observation

18] Sl |3 ; .

i 1 my |40 Event a: my is received at T = 16;
30 | {50 Event b: mp is sent at T = 20.
36 48 60

i 61y, |70

48 69 80

(or—ms |77 9%

76 l85] 100

Note

We cannot conclude that a causally precedes b.

18/38

18/38

622 Logical Clocks
Vector clocks

@ Each process P; has an array VC;[1..n], where VC;i[j] denotes the
number of events that process P; knows have taken place at process P;.

@ When P; sends a message m, it adds 1 to VC;[i], and sends VC; along
with m as vector timestamp vi(m). Result: upon arrival, recipient knows
Py’s timestamp.

@ When a process P; delivers a message m that it received from P; with
vector timestamp ts(m), it
(1) updates each VC;[k] to max{VC[k], ts(m)[k]}
(2) increments VC;[j] by 1.

What does VC;[j] = k mean in terms of messages sent and received?

19/3:

6.2 LogiealClocks
Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered.

P; increments VC;[i] only when sending a message, and P; “adjusts”
VC; when receiving a message (i.e., effectively does not change
VG-

P; postpones delivery of m until:

o ts(m)[i] = VCi[i] + 1.
o ts(m)[k] < VCj[K] for k #i.

20/38

62 LogiealClocks
Causally ordered multicasting

VCy=(1,0,0) VCy=(1,1,0)
1 N
T

PO
P .
1 } / T~
V€, =(1,1.0) VG, = (1,1,0)
P, f ,

VC,=(0,00) VC,=(1,0,0)

i \

Take VC, =0,2,2], ts(m) = [1,3,0] from Py. What information does P,

have, and what will it do when receiving m (from Pp)?

Distributed Algorithms 6.2 Logical Clocks

Distributed Algorithms 6.2 Logical Clocks

Distributed Algorithms 6.2 Logical Clocks

20/38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion

Problem

A number of processes in a distributed system want exclusive access

to some resource.

Distributed Algorithms 6.3 Mutual Exclusion

Basic solutions

@ Via a centralized server.

@ Completely decentralized, using a peer-to-peer system.
@ Completely distributed, with no topology imposed.

@ Completely distributed along a (logical) ring.

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: centralized

OO OO

Request i OK Request
No reply
/ ﬂ Queue is
empt
Coordinator Py
(@) ®)

Distributed Algorithms 6.3 Mutual Exclusion

Decentralized mutual exclusion

Assume every resource is replicated n times, with each replica having
its own coordinator = access requires a majority vote from m > n/2
coordinators. A coordinator always responds immediately to a request.

When a coordinator crashes, it will recover quickly, but will have

forgotten about permissions it had granted.

22/38

Distributed Algorithms 6.3 Mutual Exclusion

22/38

Release /

|

(©

23/38

Distributed Algorithms 6.3 Mutual Exclusion

)
@

@

6.3 Mutual Exclusion 6:3 Mutual Exclusion
Decentralized mutual exclusion

Issue

How robust is this system? Let p = At/ T denote the probability that a

coordinator crashes and recovers in a period At while having an

average lifetime T = probability that k out m coordinators reset:

Plviolation] = p, = i (T)Pkﬁ —p)"

k=2m-n

With p=0.001, n=32, m=0.75n, p, < 10~40

25/38 25/38

63 Mutual Exciusion 63 Mutal Exclusion
Mutual exclusion Ricart & Agrawala

The same as Lamport except that acknowledgments aren’t sent. Instead,

replies (i.e. grants) are sent only when

@ The receiving process has no interest in the shared resource; or

@ The receiving process is waiting for the resource, but has lower priority

(known through comparison of timestamps).

@ In all other cases, reply is deferred, implying some more local

administration.

Accesses
8

‘ resource
8 12 oK oK gix
® O D=
12 ’ OK resource
12
(a) (b)

(©

26/38 26/38

63 Mutual Exciusion 63 Mutal Exclusion
Mutual exclusion: Token ring algorithm

Organize processes in a logical ring, and let a token be passed

between them. The one that holds the token is allowed to enter the

critical region (if it wants to).

PPPPPLPP

(@) (b)

63 Mutual Exclusion
Mutual exclusion: comparison

Algorithm # msgs per Delay before entry | Problems

entry/exit (in msg times)
Centralized 3 2 Coordinator crash
Decentralized | 2mk + m, k=1,2,... | 2mk Starvation, low eff.
Distributed 2(n—-1) 2(n—1) Crash of any process
Token ring 110 Oton-—1 Lost token, proc. crash

6.4 Node Positoning
Global positioning of nodes

Problem
How can a single node efficiently estimate the latency between any
two other nodes in a distributed system?

Construct a geometric overlay network, in which the distance d(P, Q)
reflects the actual latency between P and Q.

Distributed Algorithms 6.3 Mutual Exclusion

Distributed Algorithms 6.4 Node Positioning

28

38

29/38

6.4 Node Posiiring
Computing position

Observation
A node P needs k + 1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

P needs to solve three
equations in two unknowns

(Xp.yp):

di= \/(Xi —Xxp)2+(Vi—yp)?

Distributed Algorithms 6.4 Node Positioning

29/38

30/38

6.4 Node Positoning 6.4 Node Posiiring
Computing position

Problems

@ measured latencies to

landmarks fluctuate 0 20

@ computed distances will not :] ‘
even be consistent: 1 2 3 4

P Q R

Let the L landmarks measure their pairwise latencies d(b;, b;) and let each

node P minimize

bi,P)—d(b,P)1?

L d(
> d(b;, P)

i=1

where a(b;, P) denotes the distance to landmark b; given a computed

coordinate for P.

Distributed Algorithms 6.5 Election Algorithms Distributed Algorithms 6.5 Election Algorithms

@

Election algorithms

An algorithm requires that some process acts as a coordinator. The question
is how to select this special process dynamically.

In many systems the coordinator is chosen by hand (e.qg. file servers). This
leads to centralized solutions = single point of failure.

If a coordinator is chosen dynamically, to what extent can we speak about a

centralized or distributed solution?

Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

Distributed Algorithms 6.5 Election Algorithms Distributed Algorithms 6.5 Election Algorithms

Election by bullying

Each process has an associated priority (weight). The process with

the highest priority should always be elected as the coordinator. Issue

How do we find the heaviest process?

@ Any process can just start an election by sending an election

message to all other processes (assuming you don’t know the

weights of the others).

@ If a process Ppeayy receives an election message from a lighter

process Pjgp, it sends a take-over message to Pjgny. Pignt is out of

the race.

@ If a process doesn'’t get a take-over message back, it wins, and

sends a victory message to all other processes.

@
&
@

Distributed Algorithms 6.5 Election Algorithms

Election by bullying

020 020

a Election @ 2 oK @ @
&

)
@%, ® © ®
Previous coordinator
has crashed

® %@
® 3
® g @

6.5 Elecion Agortms
Election in a ring

Process priority is obtained by organizing processes into a (logical)
ring. Process with the highest priority should be elected as
coordinator.

@ Any process can start an election by sending an election message
to its successor. If a successor is down, the message is passed
on to the next successor.

@ If a message is passed on, the sender adds itself to the list. When
it gets back to the initiator, everyone had a chance to make its
presence known.

@ The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the highest
priority is elected as coordinator.

6.5 Elecion Agortms
Election in a ring

Does it matter if two processes initiate an election?
What happens if a process crashes during the election?

Distributed Algorithms 6.5 Election Algorithms

Distributed Algorithms 6.5 Election Algorithms

Distributed Algorithms 6.5 Election Algorithms

36/38

6.5 Elcton Algorifms 6.5 Election Agorithms
Superpeer election

How can we select superpeers such that:

@ Normal nodes have low-latency access to superpeers

@ Superpeers are evenly distributed across the overlay network

@ There is be a predefined fraction of superpeers

@ Each superpeer should not need to serve more than a fixed

number of normal nodes

6.5 Elcton Algorifms 6.5 Election Algortms
Superpeer election

Reserve a fixed part of the ID space for superpeers. Example: if S

superpeers are needed for a system that uses m-bit identifiers, simply
reserve the k = [log, S| leftmost bits for superpeers. With N nodes,

we'll have, on average, 2¥-™N superpeers.

Routing to superpeer

Send message for key p to node responsible for

p AND 11---1100---00
———

k m—k

38/38 38/38

