Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 05: Naming

Version: November 13, 2012

vrije Universiteit amsterdam .ﬁb

5.1 Naming Entlties
Naming Entities

@ Names, identifiers, and addresses
@ Name resolution
@ Name space implementation

34

<l L g s
Naming

Names are used to denote entities in a distributed system. To operate
on an entity, we need to access it at an access point. Access points
are entities that are named by means of an address.

Note
A location-independent name for an entity E, is independent from the
addresses of the access points offered by E.

5.1 Naming Entities
Identifiers

Pure name

A name that has no meaning at all; it is just a random string. Pure
names can be used for comparison only.

A name having the following properties:
@ P1: Each identifier refers to at most one entity
@ P2: Each entity is referred to by at most one identifier
@ P3: An identifier always refers to the same entity (prohibits reusing
an identifier)

An identifier need not necessarily be a pure name, i.e., it may have
content.

22 Pl
Flat naming

Problem

Given an essentially unstructured name (e.g., an identifier), how can
we locate its associated access point?

@ Simple solutions (broadcasting)

@ Home-based approaches

@ Distributed Hash Tables (structured P2P)
@ Hierarchical location service

34

Simple solutions

Broadcasting

Broadcast the ID, requesting the entity to return its current address.

@ Can never scale beyond local-area networks
@ Requires all processes to listen to incoming location requests

Simple solutions

Broadcasting

Broadcast the ID, requesting the entity to return its current address.

@ Can never scale beyond local-area networks
@ Requires all processes to listen to incoming location requests

Forwarding pointers
When an entity moves, it leaves behind a pointer to its next location
@ Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers
@ Update a client’s reference when present location is found

@ Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

e Long chains are not fault tolerant
e Increased network latency at dereferencing

34

5.2 Flat Naming
Home-based approaches

Single-tiered scheme
Let a home keep track of where the entity is:

@ Entity’s home address registered at a naming service

@ The home registers the foreign address of the entity

@ Client contacts the home first, and then continues with foreign
location

Naming 5.2 Flat Naming

Home-based approaches

Host's home

location [] 1. Send packet to host at its home
B Y o
o g =T Y
2. Return address I

of current location d

Client's
K (A R location
1 o
N\ 3. Tunnel packet to \\ Cﬁﬁ 2\
&

2acurrent location
4. Send successive packets
to current location

Host's present location <7

5.2 Flat Naming
Home-based approaches

Two-tiered scheme
Keep track of visiting entities:

@ Check local visitor register first
@ Fall back to home location if local lookup fails

5.2 Flat Naming
Home-based approaches

Two-tiered scheme
Keep track of visiting entities:

@ Check local visitor register first
@ Fall back to home location if local lookup fails

Problems with home-based approaches

@ Home address has to be supported for entity’s lifetime

@ Home address is fixed = unnecessary burden when the entity
permanently moves

@ Poor geographical scalability (entity may be next to client)

5.2 Flat Naming
Home-based approaches

Two-tiered scheme

Keep track of visiting entities:

@ Check local visitor register first
@ Fall back to home location if local lookup fails

Problems with home-based approaches

@ Home address has to be supported for entity’s lifetime

@ Home address is fixed = unnecessary burden when the entity
permanently moves

@ Poor geographical scalability (entity may be next to client)

How can we solve the “permanent move” problem?

5.2 Flat Naming
Distributed Hash Tables (DHT)

Consider the organization of many nodes into a logical ring

@ Each node is assigned a random m-bit identifier.

@ Every entity is assigned a unique m-bit key.

@ Entity with key k falls under jurisdiction of node with smallest
id > k (called its successor).

Nonsolution

Let node id keep track of succ(id) and start linear search along the
ring.

10/34

5.2 Flat Naming
DHTs: Finger tables

@ Each node p maintains a finger table FT,[] with at most m entries:

FTo[i] = succ(p+2"")

Note: FTp[i] points to the first node succeeding p by at least 2/-1,

11/34

5.2 Flat Naming
DHTs: Finger tables

@ Each node p maintains a finger table FT,[] with at most m entries:

FTo[i] = succ(p+2"")

Note: FTp[i] points to the first node succeeding p by at least 2/-1,
@ To look up a key k, node p forwards the request to node with index
J satisfying

11/34

5.2 Flat Naming
DHTs: Finger tables

@ Each node p maintains a finger table FT,[] with at most m entries:

FTo[i] = succ(p+2"")

Note: FTp[i] points to the first node succeeding p by at least 2/-1,

@ To look up a key k, node p forwards the request to node with index
J satisfying

@ If p < k < FTp[1], the request is also forwarded to FT,[1]

11/34

5.2 Flat Naming
DHTs: Finger tables

2‘ Finger table
9 M
9
i x
1 o
Actual node &
9
L 5
1
31 o
4| 4 20
5114 Resolve k =12
from node 28
1
1
4
Resolve k = 26 - 4 |18
from node 1 5 [28
128
2 |28
328
41
519

12/34

22 Pl
Exploiting network proximity

Problem

The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k + 1) may be
very far apart.

13/34

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k + 1) may be

very far apart.

Topology-aware node assignment: When assigning an ID to a node, make
sure that nodes close in the ID space are also close in the network. Can

be very difficult.

13/34

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k + 1) may be

very far apart.

Topology-aware node assignment: When assigning an ID to a node, make
sure that nodes close in the ID space are also close in the network. Can
be very difficult.

Proximity routing: Maintain more than one possible successor, and forward to

the closest.
Example: in Chord FTp[i] points to first node in

INT = [p+2'-",p+2/ —1]. Node p can also store pointers to other
nodes in INT.

13/34

22 Pl
Exploiting network proximity

Problem

The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k + 1) may be
very far apart.

Topology-aware node assignment: When assigning an ID to a node, make
sure that nodes close in the ID space are also close in the network. Can
be very difficult.

Proximity routing: Maintain more than one possible successor, and forward to
the closest.

Example: in Chord FTp[i] points to first node in
INT = [p+2'-",p+2/ —1]. Node p can also store pointers to other
nodes in INT.

Proximity neighbor selection: When there is a choice of selecting who your
neighbor will be (not in Chord), pick the closest one.

13/34

Hierarchical Location Services (HLS)

Basic idea

Build a large-scale search tree for which the underlying network is
divided into hierarchical domains. Each domain is represented by a
separate directory node.

The root directory
] Top-level
node dir(T) doﬁwain T

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
)\/ (Sis contained in T)

A leaf domain, contained in S

14/34

5.2 Flat Naming
HLS: Tree organization

@ Address of entity E is stored in a leaf or intermediate node

@ Intermediate nodes contain a pointer to a child iff the subtree rooted at
the child stores an address of the entity

@ The root knows about all entities

Field with no data

Field for domain
dom(N) with
pointer to N i

. Location record
" for E at node M

Location record
with only one field,
containing an address

Domain D1

Domain D2

15/34

5.2 Flat Naming
HLS: Lookup operation

Basic principles

@ Start lookup at local leaf node
@ Node knows about E = follow downward pointer, else go up

@ Upward lookup always stops at root

Node knows
about E, so request
is forwarded to child

Node has no

record for E, so
that request is
forwarded to
parent

Domain D

Look-up
request !

16/34

HLS: Insert operation

Node knows
Node has no about E, so request
record for E, is no longer forwarded
Node creates record

so request is
forwarded

M
to parent

and stores pointer

Node creates
record and
stores address

N
! Insert
' request

a (a) (b)

Domain D

17/34

5.3 Structured Naming
Name space

A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

Data stored in n1

n2: "elke"
n3: "max"
n4: "steen"

"Ikeys"
"Ihome/steen/keys"

A directory node contains a (directory) table of (edge label, node identifier)
pairs.

18/34

5.3 Structured Naming
Name space

We can easily store all kinds of attributes in a node, describing aspects
of the entity the node represents:

@ Type of the entity

@ An identifier for that entity

@ Address of the entity’s location
@ Nicknames

° ..

19/34

5.3 Structured Naming
Name space

Observation

We can easily store all kinds of attributes in a node, describing aspects
of the entity the node represents:

@ Type of the entity

@ An identifier for that entity

@ Address of the entity’s location
@ Nicknames

° ..

Note

Directory nodes can also have attributes, besides just storing a
directory table with (edge label, node identifier) pairs.

19/34

Name resolution

Problem

To resolve a name we need a directory node. How do we actually find that
(initial) node?

20/34

5.3 Structured Naming
Name resolution

Problem

To resolve a name we need a directory node. How do we actually find that
(initial) node?

The mechanism to select the implicit context from which to start name
resolution:
@ www.cs.vu.nl: start at a DNS name server

@ /home/steen/mbox: start at the local NFS file server (possible recursive
search)

@ 0031204447784: dial a phone number
@ 130.37.24.8: route to the VU’s Web server

20/34

5.3 Structured Naming
Name resolution

Problem

To resolve a name we need a directory node. How do we actually find that
(initial) node?

The mechanism to select the implicit context from which to start name
resolution:
@ www.cs.vu.nl: start at a DNS name server

@ /home/steen/mbox: start at the local NFS file server (possible recursive
search)

@ 0031204447784: dial a phone number
@ 130.37.24.8: route to the VU’s Web server

Why are closure mechanisms always implicit?

20/34

S G Al
Name linking

What we have described so far as a path name: a name that is
resolved by following a specific path in a naming graph from one node
to another.

21/34

S G Al
Name linking

Allow a node O to contain a name of another node:

@ First resolve O’s name (leading to O)
@ Read the content of O, yielding name
@ Name resolution continues with name

22/34

S G Al
Name linking

Allow a node O to contain a name of another node:
@ First resolve O’s name (leading to O)
@ Read the content of O, yielding name
@ Name resolution continues with name

@ The name resolution process determines that we read the content
of a node, in particular, the name in the other node that we need

to go to.
@ One way or the other, we know where and how to start name
resolution given name

22/34

S G Al
Name linking

Data stored in n1

n2: "elke"
n3: "max"

n4: "steen" @ "Ikeys"

Observation
Node n5 has only one name J

23/34

5.3 Structured Naming
Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

24/34

5.3 Structured Naming
Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

24/34

5.3 Structured Naming
Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

@ Gilobal level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

24/34

5.3 Structured Naming
Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

@ Gilobal level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

@ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

24/34

5.3 Structured Naming
Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

@ Gilobal level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

@ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

@ Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

24/34

Naming 5.3 Structured Naming

Name-space implementation

Global
layer

Adminis-
trational
layer

Mana-
gerial
layer

25

34

5.3 Structured Naming
Name-space implementation

Item | Global Administrational | Managerial

1 Worldwide Organization Department

2 Few Many Vast numbers
3 Seconds Milliseconds Immediate

4 Lazy Immediate Immediate

5 Many None or few None

6 Yes Yes Sometimes

1: Geographical scale

2: # Nodes
3: Responsiveness

4: Update propagation

5: # Replicas

6: Client-side caching?

26/34

5.3 Structured Naming
lterative name resolution

@ resolve(dir,[namef1,...,nameK]) sent to Server0 responsible for dir

@ Server0resolves resolve(dir,name1) — dir1, returning the identification
(address) of Serveri, which stores dir1.

@ Client sends resolve(dir1,[name2,...,nameK]) to Server1, etc.

=

<nl,vu,cs,ftp>

> Root
<
2. #<nl>, <vu,cs, ftp> name server
3. <vu,cs,ftp> » Name server
i
< nl node
Client's 4. #<vu>, <cs,ftp>
name
resolver |_5. <csftp> »| Name server
<
< vu node
6. #<cs>, <ftp>
<ftp>
7. <ftp »| Name server
<
<8 #<ftp> cs node
< > < > :
nl,vu,cs,ftp T ¢ #<nl,vu,cs,ftp: NErES 6 /

managed by
the same server

27/34

5.3 Structured Naming
Recursive name resolution

@ resolve(dir,[namef1,...,nameK]) sent to Server0 responsible for dir

@ Server0resolves resolve(dir,name1) — dir1, and sends
resolve(dir1,[name2,...,nameK]) to Server1, which stores dir1.

© Server0 waits for result from Serveri, and returns it to client.

1. <nl,vu,cs,ftp>
P
l«———— Root

8. #<nl,vu,cs,ftp> name server 2. <vu,cs,ftp>

7. #<vu,cs,ftp> Name server

nl node
Client's 3. <cs,ftp>
name
resolver 6. #<cs,ftp> Name server
vu node 4. <ftp>
5. #<f-[p>< Name server)

cs node

<nl,vu,cs,ftp> T ¢#<nl,vu,cs,ftp>

28/34

5.3 Structured Naming
Caching in recursive name resolution

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester
cs <ftp> #<ftp> = = #<ftp>
vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>
#<cs, ftp>
nl <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>
#<cs,ftp> #<vu,cs>
#<vu,cs,ftp>
root <nl,vu,cs,ftp> #<nl> <vu,cs,ftp> #<vu> #<nl>
#<vu,cs> #<nl,vu>
#<vu,cs,ftp> #<nl,vu,cs>
#<nl,vu,cs,ftp>

29/34

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

30/34

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping
nodes to multiple servers, and start name resolution at the nearest server.

30/34

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping
nodes to multiple servers, and start name resolution at the nearest server.

Observation

An important attribute of many nodes is the address where the represented
entity can be contacted. Replicating nodes makes large-scale traditional
name servers unsuitable for locating mobile entities.

30/34

Scalability issues

Geographical scalability

We need to ensure that the name resolution process scales across large
geographical distances.

Recursive name resolution

Name server
nl node

Name server
vu node
Name server
Iterative name resolution cs node

Long-distance communication

A

\{

Problem

By mapping nodes to servers that can be located anywhere, we introduce an
implicit location dependency.

31/34

Example: Decentralized DNS

Basic idea

Take a full DNS name, hash into a key k, and use a DHT-based system to
allow for key lookups. Main drawback: You can’t ask for all nodes in a

subdomain (but very few people were doing this anyway).

Information in a node

SOA Zone Holds info on the represented zone

A Host IP addr. of host this node represents
MX Domain | Mail server to handle mail for this node
SRV Domain | Server handling a specific service

NS Zone Name server for the represented zone
CNAME | Node Symbolic link

PTR Host Canonical name of a host

HINFO Host Info on this host

TXT Any kind | Any info considered useful

32/34

2 il e e g
Attribute-based naming

Observation

In many cases, it is much more convenient to name, and look up
entities by means of their attributes = traditional directory services
(aka yellow pages).

33/34

2 il e e g
Attribute-based naming

Observation

In many cases, it is much more convenient to name, and look up
entities by means of their attributes = traditional directory services
(aka yellow pages).

Problem

Lookup operations can be extremely expensive, as they require to
match requested attribute values, against actual attribute values =
inspect all entities (in principle).

33/34

2 il e e g
Attribute-based naming

Observation

In many cases, it is much more convenient to name, and look up
entities by means of their attributes = traditional directory services
(aka yellow pages).

Problem

Lookup operations can be extremely expensive, as they require to
match requested attribute values, against actual attribute values =
inspect all entities (in principle).

Implement basic directory service as database, and combine with
traditional structured naming system.

33/34

Example: LDAP

- C=NL
- O = Vrije Universiteit
- OU = Comp. Sc.

. CN = Main server

Host_Name = star Host_Name = zephyr

O O

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit
OrganizationalUnit Comp. Sc. OrganizationalUnit Comp. Sc.
CommonName Main server CommonName Main server
Host_.Name star Host_.Name zephyr
Host_Address 192.31.231.42 Host_Address 137.37.20.10
answer =
search ("&(C = NL) (O = Vrije Universiteit) (OU = x) (CN = Main

server) ")

34/34

	Naming
	5.1 Naming Entities
	5.2 Flat Naming
	5.3 Structured Naming
	5.4 Attribute-Based Naming

