Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 01: Introduction

Version: August 27, 2012

vrije Universiteit amsterdam me

Distributed System: Definition

A distributed system is

a collection of autonomous computing elements that appears
to its users as a single coherent system

Two aspects: (1) independent computing elements and
(2) single system = middleware.

Same interface everywhere

Computer 1 Computer 2 Computer 3

Computer 4
1 I
Appl. A Application B Appl. C
[1 l l [1
Distributed-system layer (middleware)
’ Local OS 1 ‘ ’ Local OS 2 ‘ ’ Local OS 3 ‘ ’ Local OS 4 ‘
Network

Goals of Distributed Systems

@ Making resources available
@ Distribution transparency
@ Openness

@ Scalability

28

1.2 Goals
Distribution transparency

Transp. Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another location
while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency | Hide that an object may be shared by several
independent users

Failure Hide the failure and recovery of an object

4/28

12 Goals
Distribution transparency

Transp. Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another location
while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency | Hide that an object may be shared by several
independent users

Failure Hide the failure and recovery of an object

Note

Distribution transparency is a nice a goal, but achieving it is a different story.

1.2 Goals
Degree of transparency

Aiming at full distribution transparency may be too much:

1.2 Goals
Degree of transparency

Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

28

1.2 Goals
Degree of transparency

Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

@ Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

@ You cannot distinguish a slow computer from a failing one
@ You can never be sure that a server actually performed an
operation before a crash

28

1.2 Goals
Degree of transparency

Aiming at full distribution transparency may be too much:

@ Users may be located in different continents

@ Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

@ You cannot distinguish a slow computer from a failing one
@ You can never be sure that a server actually performed an
operation before a crash

@ Full transparency will cost performance, exposing distribution of the
system

o Keeping Web caches exactly up-to-date with the master
o Immediately flushing write operations to disk for fault tolerance

28

Openness of distributed systems

Open distributed system

Be able to interact with services from other open systems, irrespective
of the underlying environment:
@ Systems should conform to well-defined interfaces

@ Systems should support portability of applications
@ Systems should easily interoperate

Openness of distributed systems

Open distributed system

Be able to interact with services from other open systems, irrespective
of the underlying environment:
@ Systems should conform to well-defined interfaces

@ Systems should support portability of applications
@ Systems should easily interoperate

Achieving openness
At least make the distributed system independent from heterogeneity
of the underlying environment:

@ Hardware
@ Platforms
@ Languages

12 Goals
Policies versus mechanisms

Implementing openness

Requires support for different policies:

@ What level of consistency do we require for client-cached data?

@ Which operations do we allow downloaded code to perform?

@ Which QoS requirements do we adjust in the face of varying bandwidth?
@ What level of secrecy do we require for communication?

12 Goals
Policies versus mechanisms

Implementing openness

Requires support for different policies:

@ What level of consistency do we require for client-cached data?

@ Which operations do we allow downloaded code to perform?

@ Which QoS requirements do we adjust in the face of varying bandwidth?
@ What level of secrecy do we require for communication?

Implementing openness

Ideally, a distributed system provides only mechanisms:

@ Allow (dynamic) setting of caching policies

@ Support different levels of trust for mobile code

@ Provide adjustable QoS parameters per data stream
@ Offer different encryption algorithms

Scale in distributed systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scale in distributed systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability
At least three components:

@ Number of users and/or processes (size scalability)
@ Maximum distance between nodes (geographical scalability)
@ Number of administrative domains (administrative scalability)

Scale in distributed systems

Observation

Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability
At least three components:
@ Number of users and/or processes (size scalability)

@ Maximum distance between nodes (geographical scalability)
@ Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geographical and
administrative scalability.

e
Techniques for scaling

Hide communication latencies

Avoid waiting for responses; do something else:
@ Make use of asynchronous communication
@ Have separate handler for incoming response
@ Problem: not every application fits this model

e
Techniques for scaling

Distribution

Partition data and computations across multiple machines:

@ Move computations to clients (Java applets)
@ Decentralized naming services (DNS)
@ Decentralized information systems (WWW)

10/28

e
Techniques for scaling

Replication/caching

Make copies of data available at different machines:

@ Replicated file servers and databases
@ Mirrored Web sites

@ Web caches (in browsers and proxies)
@ File caching (at server and client)

11/28

Scaling — The problem

Applying scaling techniques is easy, except for one thing:

12/28

Scaling — The problem

Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

12/28

Scaling — The problem

Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

12/28

Scaling — The problem

Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

@ Global synchronization precludes large-scale solutions.

12/28

Scaling — The problem

Applying scaling techniques is easy, except for one thing:

@ Having multiple copies (cached or replicated), leads to
inconsistencies: modifying one copy makes that copy different
from the rest.

@ Always keeping copies consistent and in a general way requires
global synchronization on each modification.

@ Global synchronization precludes large-scale solutions.

Observation

If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application
dependent.

12/28

Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

13/28

Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:
@ The network is reliable

13/28

Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

13/28

Introduction 1.2 Goals

Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous

13/28

12 Goals
Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable
@ The network is secure
@ The network is homogeneous
@ The topology does not change

13/28

12 Goals
Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

13/28

12 Goals
Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

13/28

12 Goals
Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

@ Transport cost is zero

13/28

12 Goals
Developing distributed systems: Pitfalls

Many distributed systems are needlessly complex caused by mistakes
that required patching later on. There are many false assumptions:

@ The network is reliable

@ The network is secure

@ The network is homogeneous
@ The topology does not change
@ Latency is zero

@ Bandwidth is infinite

@ Transport cost is zero

@ There is one administrator

13/28

1.3 Types of distributed systems
Types of distributed systems

@ Distributed computing systems
@ Distributed information systems
@ Distributed pervasive systems

14/28

1.3 Types of distributed systems
Distributed computing systems

Many distributed systems are configured for High-Performance
Computing

Cluster Computing
Essentially a group of high-end systems connected through a LAN:

@ Homogeneous: same OS, near-identical hardware
@ Single managing node

15/28

1.3 Types of distributed systems
Distributed computing systems

Master node Compute node Compute node Compute node
Management Component Component Component
application of of of
parallel parallel o000 parallel
Parallel libs application application application

l Local OS ‘ l Local OS ‘ l Local OS ‘

[1 L1 | I

Remote access r r Standard network
network e
High-speed network

16/28

1.3 Types of distributed systems
Distributed computing systems

Grid Computing
The next step: lots of nodes from everywhere:

@ Heterogeneous
@ Dispersed across several organizations
@ Can easily span a wide-area network

Note

To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that will allow
for authorization on resource allocation.

17/28

1.3 Types of distributed systems
Distributed computing systems: Clouds

Software

Infrastructure

Web services, multimedia, business apps

aa Svc

Application

Software framework (Java/Python/.Net)
Storage (DB, File)

Platforms

Computation (VM), storage (block)

aa Svc

Infrastructure

Google Apps
YouT ube
Flickr

MS Azure
Amazon S3

Amazon EC2

Datacenters

18/28

1.3 Types of distributed systems
Distributed computing systems: Clouds

Cloud computing

Make a distinction between four layers:

@ Hardware: Processors, routers, power and cooling systems.
Customers normally never get to see these.

@ Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual
servers.

@ Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally
created) files to be organized and stored in so-called buckets.

@ Application: Actual applications, such as office suites (text
processors, spreadsheet applications, presentation applications).
Comparable to the suite of apps shipped with OSes.

19/28

1.3 Types of distributed systems
Distributed Information Systems

Observation

The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN_TRANSACTION (server, transaction)

READ (transaction, file-1, data)

WRITE (transaction, file-2, data)

newData := MODIFIED (data)

IF WRONG (newData) THEN
ABORT_TRANSACTION (transaction)

ELSE
WRITE (transaction, file-2, newData)
END_TRANSACTION (transaction)

END IF

20/28

1.3 Types of distributed systems
Distributed Information Systems

Observation

The vast amount of distributed systems in use today are forms of
traditional information systems, that now integrate legacy systems.
Example: Transaction processing systems.

BEGIN_TRANSACTION (server, transaction)

READ (transaction, file-1, data)

WRITE (transaction, file-2, data)

newData := MODIFIED (data)

IF WRONG (newData) THEN
ABORT_TRANSACTION (transaction)

ELSE
WRITE (transaction, file-2, newData)
END_TRANSACTION (transaction)

END IF

Note
Transactions form an atomic operation.

20/28

1.3 Types of distributed systems
Distributed information systems: Transactions

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

21/28

1.3 Types of distributed systems
Distributed information systems: Transactions

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

21/28

1.3 Types of distributed systems
Distributed information systems: Transactions

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

21/28

1.3 Types of distributed systems
Distributed information systems: Transactions

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T, or
after T, but never both.

21/28

1.3 Types of distributed systems
Distributed information systems: Transactions

A transaction is a collection of operations on the state of an object (database,
object composition, etc.) that satisfies the following properties (ACID)

Atomicity: All operations either succeed, or all of them fail. When the
transaction fails, the state of the object will remain unaffected by the
transaction.

Consistency: A transaction establishes a valid state transition. This does not
exclude the possibility of invalid, intermediate states during the
transaction’s execution.

Isolation: Concurrent transactions do not interfere with each other. It appears
to each transaction T that other transactions occur either before T, or
after T, but never both.

Durability: After the execution of a transaction, its effects are made
permanent: changes to the state survive failures.

21/28

1.3 Types of distributed systems
Transaction processing monitor

Observation

In many cases, the data involved in a transaction is distributed across
several servers. A TP Monitor is responsible for coordinating the
execution of a transaction

Server
Reply
Transaction Request
Requests
Client N\ Request
o () TP monitor Server
application A
Reply
Repl
Py Request
Reply Server

22/28

Distr. info. systems: Enterprise application integration

Problem

A TP monitor doesn’t separate apps from their databases. Also
needed are facilities for direct communication between apps.

Client Client
application application

[[
l Communication middleware ‘
[[[
Server-side Server-side
application application

Server-side
application

= = =

@ Remote Procedure Call (RPC)
@ Message-Oriented Middleware (MOM)

23/28

1.3 Types of distributed systems
Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes

24/28

1.3 Types of distributed systems
Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes

@ Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.

24/28

1.3 Types of distributed systems
Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes

@ Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.

@ Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.

24/28

1.3 Types of distributed systems
Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are
small, mobile, and often embedded in a larger system, characterized
by the fact that the system naturally blends into the user’s environment.

Three (overlapping) subtypes

@ Ubiquitous computing systems: pervasive and continuously
present, i.e., there is a continous interaction between system and
user.

@ Mobile computing systems: pervasive, but emphasis is on the fact
that devices are inherently mobile.

@ Sensor (and actuator) networks: pervasive, with emphasis on the
actual (collaborative) sensing and actuation of the environment.

24/28

1.3 Types of distributed systems
Ubiquitous computing systems

Basic characteristics

@ (Distribution) Devices are networked, distributed, and accessible
in a transparent manner

25/28

1.3 Types of distributed systems
Ubiquitous computing systems

Basic characteristics

@ (Distribution) Devices are networked, distributed, and accessible
in a transparent manner

@ (Interaction) Interaction between users and devices is highly
unobtrusive

25/28

1.3 Types of distributed systems
Ubiquitous computing systems

Basic characteristics

@ (Distribution) Devices are networked, distributed, and accessible
in a transparent manner

@ (Interaction) Interaction between users and devices is highly
unobtrusive

@ (Context awareness) The system is aware of a user’s context in
order to optimize interaction

25/28

1.3 Types of distributed systems
Ubiquitous computing systems

Basic characteristics

@ (Distribution) Devices are networked, distributed, and accessible
in a transparent manner

@ (Interaction) Interaction between users and devices is highly
unobtrusive

@ (Context awareness) The system is aware of a user’s context in
order to optimize interaction

@ (Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed

25/28

1.3 Types of distributed systems
Ubiquitous computing systems

Basic characteristics

@ (Distribution) Devices are networked, distributed, and accessible
in a transparent manner

@ (Interaction) Interaction between users and devices is highly
unobtrusive

@ (Context awareness) The system is aware of a user’s context in
order to optimize interaction

@ (Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed

@ (Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

25/28

1.3 Types of distributed systems
Mobile computing systems

Mobile computing systems are generally a subclass of ubiquitous
computing systems and meet all of the five requirements.

Typical characteristics

@ Many different types of mobile divices: smart phones, remote
controls, car equipment, and so on

@ Wireless communication

@ Devices may continuously change their location =

e setting up a route may be problematic, as routes can change
frequently

@ devices may easily be temporarily disconnected =
disruption-tolerant networks

26/28

Sensor networks

Characteristics
The nodes to which sensors are attached are:

@ Many (10s-1000s)
@ Simple (small memory/compute/communication capacity)
@ Often battery-powered (or even battery-less)

27/28

Introduction 1.3 Types of distributed systems

Sensor networks as distributed systems

Sensor network

Operator's site

@ Sensor data :

is sent directly
to operator

(@)

Each sensor
can process and Sensor network
store data

Operator's site

Query

_—
Sensors E

send only
answers

(b) 28/28

	Introduction
	1.1 Definition
	1.2 Goals
	1.3 Types of distributed systems

