Distributed Systems

Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science

steen@cs.vu.nl

Chapter 10: Distributed Object-Based Systems

Version: December 10, 2012

vrije Universiteit amsterdam Jﬁb

Distributed Object-Based Systems 10.1 Architecture Distributed Object-Based Systems 10.1 Architecture

Remote distributed objects

Data and operations encapsulated in an object
Operations implemented as methods grouped into interfaces

Object offers only its interface to clients

Object server is responsible for a collection of objects

Client stub (proxy) implements interface

Server skeleton handles (un)marshaling and object invocation

Client machine Server machine

Object

Client Server

State

invokes

Same
Client ?l interface oo Method
as object

a method ¢ "
Py i ~/E$:| e
m same method Skeleton

| at object
Client OS ‘ Server OS
Network
Marshalled invocation
is passed across network
2/22
Distributed Object-Based Systems 10.1 Architecture Distributed Object-Bas stems 10.1 Architecture

Remote distributed objects

Types of objects |

@ Compile-time objects: Language-level objects, from which proxy

and skeletons are automatically generated.

@ Runtime objects: Can be implemented in any language, but

require use of an object adapter that makes the implementation

appear as an object.

Types of objects Il

@ Transient objects: live only by virtue of a server: if the server exits,

so will the object.

@ Persistent objects: live independently from a server: if a server

exits, the object’s state and code remain (passively) on disk.

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

The actual implementation of an object, sometimes containing only
method implementations:
@ Collection of C or COBOL functions, that act on structs, records,
database tables, etc.
@ Java or C++ classes

Server-side stub for handling network 1/0:
@ Unmarshalls incoming requests, and calls the appropriate servant
code
@ Marshalls results and sends reply message
@ Generated from interface specifications

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

Object adapter

The “manager” of a set of objects:
@ Inspects (as first) incoming requests
@ Ensures referenced object is activated (requires identification of
servant)
@ Passes request to appropriate skeleton, following specific
activation policy
@ Responsible for generating object references

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

Server with three objects
Server machine

Object's stub
(skeleton)

Observation

Object servers determine
how their objects are
constructed

Distributed Object-Based Systems 10.2 Processes

Distributed Object-Based Systems 10.2 Processes

Distributed Object-Based Systems 10.2 Processes

‘ Object adapter ‘ Object adapler

Request
demult\p\exer

Local OS

Distributed Object-Based Systems 10.2 Processes Distributed Object-Based Systems 10.2 Processes

Example: Ice

main (int argc, charx argv([]) {

Ice::Communicator ic;

Ice::0ObjectAdapter adapter;

Ice::0Object object;

ic = Ice::initialize(argc, argv);

adapter = ic->createObjectAdapterWithEndPoints
("MyAdapter","tcp -p 10000");

object = new MyObject;

adapter->add (object, objectID);

adapter->activate();

ic->waitForShutdown () ;

Note

Activation policies can be changed by modifying the properties

attribute of an adapter. Ice aims at simplicity, and achieves this partly
by putting policies into the middleware.

Distributed Object-Based Systems 10.3 Communication Distributed Object-Based Systems 10.3 Communication

Remote Method Invocation (RMI)

(Assume client stub and server skeleton are in place)

@ Client invokes method at stub

@ Stub marshals request and sends it to server

@ Server ensures referenced object is active:

o Create separate process to hold object

e Load the object into server process
o ...

Request is unmarshaled by object’s skeleton, and referenced method is
invoked

@ If request contained an object reference, invocation is applied recursively

(i.e., server acts as client)

Result is marshaled and passed back to client
Client stub unmarshals reply and passes result to client application

8/22

Distributed Object-Based Systems 10.3 Communication Distributed Object-Based Systems 10.3 Communication

RMI: Parameter passing

Object reference

Much easier than in the case of RPC:

@ Server can simply bind to referenced object, and invoke methods

@ Unbind when referenced object is no longer needed

Distributed Object-Based Systems

RMI: Parameter passing

10.3 Communication

stributed Object-Based Systems

10.3 Communication

Object-by-value
A client may also pass a complete object as parameter value:

@ An object has to be marshaled:
o Marshall its state

o Marshall its methods, or give a reference to where an
implementation can be found

@ Server unmarshals object. Note that we have now created a copy
of the original object.

@ Object-by-value passing tends to introduce nasty problems

10/22

10/22

Distributed Object-Based Systems

10.3 Communication Distributed Object-Based Systems 10.3 Communication
RMI: Parameter passing
Machine A Machine B
Local object
Remote object
reference reference R1 >
Client code with |
RMI to server at C |
(proxy) New local H
reference Copy of O1 !
Remote N4 x'/ \
invocation with N A
L1 and R1 as U L Copy of R1 to 02
(PSS 5 Server code
Machine C (method implementation)
Systemwide object reference generally contains server address, port to which

adapter listens, and local object ID. Extra: Information on protocol between
client and server (TCP, UDP, SOAP, etc.)

11/22

Distributed Object-Based Systems

10.3 Communication Distributed Object-Based Systems 10.3 Communication
RMI: Parameter passing
Machine A Machine B
Local pecallobiecy Remote object
reference L1 = [REEHD 02
reference R1 |5
Client code with v
RMI to server at C !
(proxy) New local /
reference Copy of O1 4
Remote Y, o \
invocation with bl e o1
L1 and R1 as Copy of R1 to 02
parameters - Server code
Machine C (method implementation)

What'’s an alternative implementation for a remote-object reference?

12/22

Distributed Object-Based Systems 10.3 Communication Distributed Object: 10.3 Communication

Object-based messaging

Client application

1. Call by the v

application

Client Callback | 4. Call by the RTS
proxy interface

3. Response from server

Client
RTS

2. Request to server

Client application

1. Call by the ——— 4. Call by the
application A 4 application
Client Polling
proxy interface
3. Response from server
Client
RTS .

2. Request to server

Distributed Object-Base S 10.4 Naming Distributed Ol 10.4 Naming

Object references

Observation

In order to invoke remote objects, we need a means to uniquely refer
to them. Example: CORBA object references.

Tagged Profile
Interoperable Object Reference (IOR)

Repository | | Profile .
identifier ID il
O Host ‘ Port Objectkey‘ Components
version
Adapter Object Other server-
identifier | identifier |specific information

Distributed Object-Based Systems 10.4 Naming Distributed Object-Bas: yS 3 10.4 Naming

Object references

It is not important how object references are implemented per object-based

system, as long as there is a standard to exchange them between systems.

Object server Interoperable (Half) gateway

references

Solution

Object references passed from one RTS to another are transformed by the

bridge through which they pass (different transformation schemes can be

implemented)

Distributed Object-Based Systems 10.4 Naming Distributed Object-Based Systems 10.4 Naming

Object references

Object server Interoperable (Half) gateway

references

Object system A Object system B

Observation

Passing an object reference refA from RTS A to RTS B circumventing

the A-to-B bridge may be useless if RTS B doesn’t understand refA

16/22

Distributed Object-Based Systems 10.4 Naming Distributed Object-Based Systems 10.4 Naming

Globe object references: location independent

Stacked address

Stack of addresses representing the protocol to speak:

Field Description

Protocol ID Constant representing a (known) protocol

Protocol addr. | Protocol-specific address

Impl. handle Reference to afile in a repository

Instance address

Contains all that is needed to talk in a propritary way to an object:

Field Description

Impl. handle Reference to a file in a repository

Initialization string | Used to initialize an implementation

Distributed Object-Based Systems 10.6 Consistency and Replication Distributed Object-Based Systems 10.6 Consistency and Replication

Consistency and replication

Objects form a natural means for realizing entry consistency:

@ Data are grouped into units, and protected by a synchronization

variable (i.e., lock)

@ Synchronization variables adhere to sequential consistency (i.e.,

values are set atomically)

@ Operations of grouped data can be nicely grouped: object

Problem

What happens when objects are replicated? One way or the other we

need to ensure that operations on replicated objects are properly

ordered.

18/22

18/22

Distributed Object-Based Systems 10.6 Consistency and Replication Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated objects

Problem

We need to make sure that requests are ordered correctly at the

servers and that threads are deterministically sheduled

Computer 1 Computer 2

[—]

Deterministic T2 T2
thread scheduling Y| Threads

,_/ _

Cl

‘ Pllﬂ Totally ordered R‘*T
requests
Middleware \—D]IH Middleware \—DJE—

Local OS Local OS

T
| Unordered requests Unordered requests

19/22

Distributed Object-Based Systems 10.6 Consistency and Replication Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated objects

Observation

We are dealing with nasty issues here. Simplicity may dictate

completely serialized (i.e., single-threaded) executions at the server.

20/22

Distributed Object-Based Systems 10.6 Consistency and Replication Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated invocations

Active replication

Updates are forwarded to multiple replicas, where they are carried out.

There are some problems to deal with in the face of replicated

invocations

Client replicates g
invocation request

Object receives
the same invocation

three times

All replicas see

the same invocation

Replicated object

21/22

Distributed Object-Based Systems 10.6 Consistency and Replication Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated invocations

Assign a coordinator on each side (client and server), which ensures

that only one invocation, and one reply is sent

Coordinator Coordinator

of object B of object C

Client replicates

invocation request

Result

22/22 22/22

