Tutorial Session
(week 14)

Rena Bakhshi

April 4-5, 2013
Goals:
- Revise parts of the main lecture
- Strengthen your graph theory skills (useful for the exam 😊)
- Have fun! 😊

Books:
- Maarten van Steen “Graph Theory And Complex Networks: An Introduction”
- Robin Wilson “Introduction to Graph Theory”

Communication by email:
- From your VU account (not ...@xs4all.nl!)
Homework Assignments

When?
- posted: Fridays (started from next week)
- deadline: Wednesdays at 11:59am (noon)

What?
- Single PDF and single NB (Mathematica) attachment
- Email to graphs.few@vu.nl
- Subject: <Vunet_ID>_<#>
 - E.g., for VUnet_ID abc123, and homework 1: subject = abc123_1
 - Wrong subject format: Notification email, no registration
 - Correct subject format: Confirmation email, registration
 - Wrong email: no mail response no feedback no grade!

Adjacency Matrix

Definition

The adjacency matrix of a *simple* graph on *n* vertices is an *n* × *n* matrix \(A = (a_{i,j}) \) in which the entry \(a_{i,j} \) is:

- \(=1 \), if there is an edge from vertex \(i \) to vertex \(j \)
- \(=0 \), if there is *no* edge from vertex \(i \) to vertex \(j \).

Example

![Diagram of a graph and its adjacency matrix]

Observations

- \(G \) is simple \(\iff \) \(A[i,j] \leq 1 \) and \(A[i,j] = 0 \).
Adjacency Matrix

Exercise

Give the adjacency matrix for each of the following graphs, and draw those graphs.

G1: \(V = \{1, 2, 3, 4, 5, 6\} \) and
\[
E = \{(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)\}
\]

G2: \(V = \{1, 2, 3, 4, 5\} \) and
\[
E = \{(1, 2), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)\}
Adjacency Matrix
Definition

Let $G = (V, E)$ be a simple graph. The complement \bar{G} of G is a graph with the same vertex set V, but whose edge set consists of those edges not present in G: $\forall v \in V, \forall e : e \in E(\bar{G}) \text{ and } e \notin E$.

In other words, an edge $\langle v, u \rangle$ is in \bar{G} if and only if it is not in G.

Complement

Definition

Let $G = (V, E)$ be a simple graph. The complement \bar{G} of G is a graph with the same vertex set V, but whose edge set consists of those edges not present in G: $\forall e : e \in E(\bar{G})$ and $e \notin E$.

In other words, an edge $\langle v, u \rangle$ is in \bar{G} if and only if it is not in G.

![Graph G and its complement \bar{G}]
Let $G = (V, E)$ be a simple graph. The complement \bar{G} of G is a graph with the same vertex set V, but whose edge set consists of those edges not present in G: $v \in V, \forall e : e \in E(\bar{G})$ and $e \notin E$.

In other words, an edge $\langle v, u \rangle$ is in \bar{G} if and only if it is not in G.

G \bar{G}
Complement

Definition

Let $G = (V, E)$ be a simple graph. The complement \tilde{G} of G is a graph with the same vertex set V, but whose edge set consists of those edges not present in G: $v \in V, \forall e : e \in E(\tilde{G})$ and $e \notin E$.

In other words, an edge $\langle v, u \rangle$ is in \tilde{G} if and only if it is not in G.

Superimposing any graph of n nodes with its complement, gives the complete graph K_n.
Complement

Definition

Let $G = (V, E)$ be a simple graph. The complement \bar{G} of G is a graph with the same vertex set V, but whose edge set consists of those edges not present in G: $\forall v \in V, \forall e : e \in E(\bar{G})$ and $e \notin E$.

In other words, an edge $\langle v, u \rangle$ is in \bar{G} if and only if it is not in G.

Superimposing any graph of n nodes with its complement, gives the complete graph K_n.
Complement

Find complements of these two graphs:
COMPLEMENT

Find complements of these two graphs:

SOLUTION
Degree sequence

Theorem (Havel-Hakimi)

An ordered degree sequence s is graphic, if and only if s^* is also graphic.

$$s = [k, d_1, d_2, \ldots, d_{n-1}]$$

$$s^* = [d_1 - 1, d_2 - 1, \ldots, d_k - 1, d_{k+1}, \ldots, d_{n-1}]$$

and $k \geq d_i \geq d_{i+1}$.

Example

$[3, 2, 2, 1]$
Degree sequence

Theorem (Havel-Hakimi)

An ordered degree sequence s is graphic, if and only if s^* is also graphic.

$$s = [k, d_1, d_2, \ldots, d_{n-1}]$$

$$s^* = [d_1 - 1, d_2 - 1, \ldots, d_k - 1, d_{k+1}, \ldots, d_{n-1}]$$

and $k \geq d_i \geq d_{i+1}$.

Example

\[[3,2,2,1] \rightarrow [1,1,0] \]
Degree sequence

Theorem (Havel-Hakimi)

An ordered degree sequence \(s \) is graphic, if and only if \(s^* \) is also graphic.

\[
s = [k, d_1, d_2, \ldots, d_{n-1}]
\]

\[
s^* = [d_1 - 1, d_2 - 1, \ldots, d_k - 1, d_{k+1}, \ldots, d_{n-1}]
\]

and \(k \geq d_i \geq d_{i+1} \).

Example

\[[3,2,2,1] \rightarrow [1,1,0] \rightarrow [0,0] \]
DEGREE SEQUENCE

THEOREM (HAVEL-HAKIMI)

An ordered degree sequence s is graphic, if and only if s^* is also graphic.

$$s = [k, d_1, d_2, \ldots, d_{n-1}]$$
$$s^* = [d_1 - 1, d_2 - 1, \ldots, d_k - 1, d_{k+1}, \ldots, d_{n-1}]$$

and $k \geq d_i \geq d_{i+1}$.

EXAMPLE

$$[3, 2, 2, 1] \rightarrow [1, 1, 0] \rightarrow [0, 0]$$

Draw a graph with this sequence.
Degree sequence

Theorem (Havel-Hakimi)

An ordered degree sequence s is graphic, if and only if s^* is also graphic.

$$s = [k, d_1, d_2, \ldots, d_{n-1}]$$

$$s^* = [d_1 - 1, d_2 - 1, \ldots, d_k - 1, d_{k+1}, \ldots, d_{n-1}]$$

and $k \geq d_i \geq d_{i+1}$.

Exercises

Are these sequences graphic:

- $[3,2,1,1]$;
- $[2,2,2,2]$;
- $[5,4,4,3,1,1]$;
- $[3,3,2,2,1,1]$;
- $[4,4,1,1,1,1,1,1]$

Apply Havel-Hakimi theorem.
Degree sequence

Solutions

- [2, 2, 2, 2, 2]
- [4, 4, 1, 1, 1, 1, 1]
- [3, 2, 2, 1]
- [3, 3, 2, 2, 1, 1]
Isomorphism

Definition

G_1 and G_2 are isomorphic if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

G_1 and G_2 Solution

$\phi = \{ 1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 4, 4 \rightarrow 3 \}$.
Isomorphism

Definition

G_1 and G_2 are **isomorphic** if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Informally, two graphs are isomorphic if they contain the same number of vertices, connected in the same way.
Isomorphism

Definition

G_1 and G_2 are isomorphic if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Informally, two graphs are isomorphic if they contain the same number of vertices, connected in the same way.

Iso-Cube Demo!
Isomorphism

Definition

G_1 and G_2 are **isomorphic** if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

![Diagram](image-url)
Isomorphism

Definition

G_1 and G_2 are isomorphic if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

![Graph G_1 and G_2](image)

Solution

$$\phi = \{1 \rightarrow 1, \ 2 \rightarrow 2, \ 3 \rightarrow 4, \ 4 \rightarrow 3\}.$$
Isomorphism

Definition

G_1 and G_2 are **isomorphic** if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

G_1 G_2

Solution

$\phi = \{1 \rightarrow 1, 2 \rightarrow 4, 3 \rightarrow 2, 4 \rightarrow 5, 5 \rightarrow 3\}$.

Isomorphism

Definition

G_1 and G_2 are isomorphic if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

G_1 and G_2 are isomorphic with $\phi = \{1 \rightarrow 1, 2 \rightarrow 4, 3 \rightarrow 2, 4 \rightarrow 5, 5 \rightarrow 3\}$.
ISOMORPHISM

Definition

G_1 and G_2 are isomorphic if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$.

Example

![Diagram showing G_1 and G_2]

Solution

$$\phi = \{1 \rightarrow 1, 2 \rightarrow 4, 3 \rightarrow 2, 4 \rightarrow 5, 5 \rightarrow 3\}.$$
Isomorphism

Definition

G_1 and G_2 are **isomorphic** if there is a one-to-one mapping $\phi : V_1 \rightarrow V_2$ such that for each edge $e_1 \in E_1$ with $e_1 = \langle v, u \rangle$ there is a unique edge $e_2 \in E_2$ with $e_2 = \langle \phi(v), \phi(u) \rangle$
Isomorphism

Exercise

Which of the pairs of graphs are isomorphic? (If yes, find \(\phi \); if not, why).

Solutions

(a) Yes: \(1 \rightarrow 4, \ 2 \rightarrow 2, \ 3 \rightarrow 3, \ 4 \rightarrow 1, \ 5 \rightarrow 5 \).
ISOMORPHISM

EXERCISE

Which of the pairs of graphs are isomorphic? (If yes, find \(\phi \); if not, why).

SOLUTIONS

(a) Yes: \(1 \rightarrow 4, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 1, 5 \rightarrow 5 \).
(b) Yes: \(1 \rightarrow 4, 2 \rightarrow 5, 3 \rightarrow 1, 4 \rightarrow 2, 3 \rightarrow 5 \).
Isomorphism

Exercise

Which of the pairs of graphs are isomorphic? (If yes, find ϕ; if not, why).

![Graphs](image)

(c)

(d)

Solutions
Isomorphism

Exercise

Which of the pairs of graphs are isomorphic? (If yes, find ϕ; if not, why).

(c) (d)

Solutions

(c) No: because node 2 has degree 4 in the left graph.

(d) No: because node 5 has degree 5 in the left graph.
Self-complementary Graphs

Definition
A graph is called self-complementary if it is isomorphic to its complement.

Exercise
Find all self-complementary graphs with 4 nodes.
Self-complementary Graphs

Definition
A graph is called **self-complementary** if it is **isomorphic to its complement**.

Exercise
Find all self-complementary graphs with 4 nodes.

Answer
- Let us first think how many edges a self-complementary graph G of 4 nodes should have.
SELF-COMPLEMENTARY GRAPHS

Definition
A graph is called self-complementary if it is isomorphic to its complement.

Exercise
Find all self-complementary graphs with 4 nodes.

Answer
- Let us first think how many edges a self-complementary graph G of 4 nodes should have.
- If G has k edges, \bar{G} also has k (because they are isomorphic).
SELF-COMPLEMENTARY GRAPHS

DEFINITION

A graph is called self-complementary if it is isomorphic to its complement.

EXERCISE

Find all self-complementary graphs with 4 nodes.

ANSWER

- Let us first think how many edges a self-complementary graph G of 4 nodes should have.
- If G has k edges, \bar{G} also has k (because they are isomorphic).
- But the edges of G plus the edges of \bar{G} should be equal to the number of edges in the complete graph K_4.

SELF-COMPLEMENTARY GRAPHS

DEFINITION

A graph is called self-complementary if it is isomorphic to its complement.

EXERCISE

Find all self-complementary graphs with 4 nodes.

ANSWER

- Let us first think how many edges a self-complementary graph G of 4 nodes should have.
- If G has k edges, \bar{G} also has k (because they are isomorphic).
- But the edges of G plus the edges of \bar{G} should be equal to the number of edges in the complete graph K_4.
- So: $|E(G)| + |E(\bar{G})| = |E(K_4)|$
Self-complementary Graphs

Definition
A graph is called **self-complementary** if it is isomorphic to its complement.

Exercise
Find all self-complementary graphs with 4 nodes.

Answer
- Let us first think how many edges a self-complementary graph G of 4 nodes should have.
- If G has k edges, \bar{G} also has k (because they are isomorphic).
- But the edges of G plus the edges of \bar{G} should be equal to the number of edges in the complete graph K_4.
- So: $|E(G)| + |E(\bar{G})| = |E(K_4)|$
- $\Rightarrow k + k = 6$
- $\Rightarrow k = 3$
Self-complementary Graphs

Definition
A graph is called *self-complementary* if it is *isomorphic to its complement*.

Exercise
Find all self-complementary graphs with 4 nodes.

Answer
- Here we list all graphs with 4 nodes and 3 edges (we do not put the isomorphic ones):

 ![Graphs](image-url)
Self-complementary Graphs

Definition

A graph is called self-complementary if it is isomorphic to its complement.

Exercise

Find all self-complementary graphs with 4 nodes.

Answer

- Here we list all graphs with 4 nodes and 3 edges (we do not put the isomorphic ones):

 ![Graphs](image)

- Clearly, only the left one is self-complementary.
Proof

Tips

- What you are going to prove.
- What method of proof you will to use.
- Make sure each statement follows logically from the previous.
- Be very careful in how you phrase each sentence.
- Define your notations and follow them.

Methods

- Direct proof;
- By construction;
- By contradiction;
- By induction.
Direct Proof

A task of the form:

“For some statements p and q, $\forall x \in X$ if $p(x)$ is true then $q(x)$ is true”

Assume p, and prove that q holds for all values of x using known axioms, facts and theorems.

Example

Show that the degree sequence \[2, 2, 2, 2, 2\] is graphical.

Proof.

Using Havel-Hakimi theorem, \[2, 2, 2, 2, 2\] → \[2, 2, 1, 1\] → \[1, 0\] → \[0, 0\].

The degree sequence \[0, 0\] is graphical. Hence, the original sequence \[2, 2, 2, 2, 2\] is graphical too.
Direct Proof

A task of the form:

“For some statements p and q, $\forall x \in X$ if $p(x)$ is true then $q(x)$ is true”

Assume p, and prove that q holds for all values of x using known axioms, facts and theorems.

Example

Show that the degree sequence $[2, 2, 2, 2, 2]$ is graphical.
Direct Proof

A task of the form:

“For some statements \(p \) and \(q \), \(\forall x \in X \) if \(p(x) \) is true then \(q(x) \) is true”

Assume \(p \), and prove that \(q \) holds for all values of \(x \) using known axioms, facts and theorems.

Example

Show that the degree sequence \([2, 2, 2, 2, 2]\) is graphical.

Proof.

Using Havel-Hakimi theorem,

\[
[2, 2, 2, 2, 2] \rightarrow [2, 2, 1, 1] \rightarrow [1, 1, 0] \rightarrow [0, 0].
\]

The degree sequence \([0, 0]\) is graphical. Hence, the original sequence \([2, 2, 2, 2, 2]\) is graphical too.
By construction

Example

A task of the form:

\[
\text{There is/exists an } x \text{ such that } p(x) \text{ true.}
\]

Example

Show that the degree sequence \([2, 2, 2, 2, 2]\) is graphical.
By construction

Example

A task of the form:

There is/exists an \(x \) *such that* \(p(x) \) *true.*

Example

Show that the degree sequence \([2, 2, 2, 2, 2]\) is graphical.

Counter-example

Usually, of the form:

For all \(x \in X \), \(p(x) \) *is true.*

To disprove it, one example of \(x \in X \) (called counter-example) is sufficient.

Example

For any graph, there is one vertex/node in a graph that has no edges.
Isomorphism

Exercise
Show that two graphs of the same number of vertices and the same degrees on corresponding vertices are not necessarily isomorphic.
Isomorphism

Exercise
Show that two graphs of the *same number of vertices* and the *same degrees* on corresponding vertices are *not necessarily isomorphic*.

Answer
We show this by *construction*:
Isomorphism

Exercise
Show that two graphs of the same number of vertices and the same degrees on corresponding vertices are not necessarily isomorphic.

Answer
We show this by construction:
Proof Methods

By contradiction
An indirect form of proof: proving p by assuming p is false.

Example
The degree sequence $[3, 2, 1, 1]$ is not graphical.
Proof Methods

By contradiction
An indirect form of proof: proving p by assuming p is false.

Example
The degree sequence $[3, 2, 1, 1]$ is not graphical.

Proof.
We prove it by contradiction.
Proof Methods

By contradiction
An indirect form of proof: proving p by assuming p is false.

Example
The degree sequence $[3, 2, 1, 1]$ is *not* graphical.

Proof.
We prove it by *contradiction*.
Assumption: Suppose the degree sequence is graphical.
Proof Methods

By contradiction
An indirect form of proof: proving \(p \) by assuming \(p \) is false.

Example
The degree sequence \([3, 2, 1, 1]\) is not graphical.

Proof.
We prove it by contradiction.
Assumption: Suppose the degree sequence is graphical.

- Then by applying Havel-Hakimi theorem we should reach eventually sequence which is also graphical.
Proof Methods

By contradiction
An indirect form of proof: proving p by assuming p is false.

Example
The degree sequence $[3, 2, 1, 1]$ is not graphical.

Proof.
We prove it by contradiction.
Assumption: Suppose the degree sequence is graphical.
- Then by applying Havel-Hakimi theorem we should reach eventually sequence which is also graphical.
- This means, $[3, 2, 1, 1] \rightarrow [1, 0, 0] \rightarrow [-1, 0]$.
Proof Methods

By contradiction
An indirect form of proof: proving p by assuming p is false.

Example
The degree sequence $[3, 2, 1, 1]$ is *not* graphical.

Proof.
We prove it by *contradiction*.

Assumption: Suppose the degree sequence is graphical.

- Then by applying Havel-Hakimi theorem we should reach eventually sequence which is also graphical.
- This means, $[3, 2, 1, 1] \rightarrow [1, 0, 0] \rightarrow [-1, 0]$.
- But the degree cannot be negative, which implies the original assumption was *false*.
Proof Methods

Exercise

Show that there is no simple graph with
- 12 vertices and
- 28 edges

in which the degree of each vertex is either 3 or 4.
Proof Methods

Exercise
Show that there is no simple graph with

- 12 vertices and
- 28 edges

in which the degree of each vertex is either 3 or 4.

Proof.
We prove it by contradiction.
Exercise

Show that there is no simple graph with

- 12 vertices and
- 28 edges

in which the **degree of each vertex is either 3 or 4**.

Proof.

We prove it by **contradiction**.

Assumption: Suppose that such a graph **exists**, and it has k vertices of degree 3.
Proof Methods

Exercise

Show that there is **no** simple graph with

- **12 vertices** and
- **28 edges**

in which the **degree of each vertex is either 3 or 4**.

Proof.

We prove it by **contradiction**.

Assumption: Suppose that such a graph **exists**, and it has \(k \) vertices of degree 3.

- The remaining \((12 - k)\) vertices have all degree 4.
Intro

Proof Methods

Exercise

Show that there is no simple graph with

- 12 vertices and
- 28 edges

in which the degree of each vertex is either 3 or 4.

Proof.

We prove it by contradiction.

Assumption: Suppose that such a graph exists, and it has k vertices of degree 3.

- The remaining $(12 - k)$ vertices have all degree 4.
- We know that, the sum of the degrees is $\sum_{v \in V} \delta(v) = 2|E(G)|$.
- Then, $3 \cdot k + 4 \cdot (12 - k) = 28 \cdot 2 = 56$
Proof Methods

Exercise
Show that there is no simple graph with
- **12 vertices** and
- **28 edges**
in which the degree of each vertex is either 3 or 4.

Proof.
We prove it by **contradiction**.
ASSUMPTION: Suppose that such a graph **exists**, and it has **k vertices** of degree 3.
- The remaining $(12 - k)$ vertices have all degree 4.
- We know that, the sum of the degrees is $\sum_{v \in V} \delta(v) = 2|E(G)|$.
- Then, $3 \cdot k + 4 \cdot (12 - k) = 28 \cdot 2 = 56$
- Solving this, gives $k = -8$. Impossible, which implies the original assumption was **false**.
Proof Methods

Powerful method of proof based on Induction Principle. Used in many areas of mathematics and (theoretical) computer science.

The Induction Principle

Let \(p(n) \) be a statement that involves \(n \in \mathbb{N} \) (i.e., \(n = 1, 2, \ldots \)). Then \(p(n) \) is true for all \(n \) if:

- \(p(1) \) is true, and
- \(p(n) \) implies \(p(n + 1) \) is true for all natural numbers \(n \).
Intro

Proof Methods

By (Mathematical) Induction

A task of the form:

For all $n \geq a$, $p(n)$.

Proof by induction consists of:

- **Base case**: assuming $n = a$, show that $p(a)$ holds.
- **Inductive Hypothesis**: Assume $p(n)$ holds.
- **Inductive step**: If $p(n)$ holds, show $p(n + 1)$ holds.
Example

Show that for $n \in \mathbb{N}$ with $n \geq 1$ we have:

$$2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$$
Example

Show that for $n \in \mathbb{N}$ with $n \geq 1$ we have:

$$2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$$

Proof.

Basic case We test for $n = 1$. Indeed, we have $2^1 = 2^2 - 2$.
Proof Methods

Example
Show that for \(n \in \mathbb{N} \) with \(n \geq 1 \) we have:

\[
2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2
\]

Proof.
Basic case We test for \(n = 1 \). Indeed, we have \(2^1 = 2^2 - 2 \).
Hypothesis We assume that the formula holds for \(n = k \):
\[
\sum_{i=1}^{k} 2^i = 2^{k+1} - 2.
\]
Introduction

Proof Methods

Example

Show that for $n \in \mathbb{N}$ with $n \geq 1$ we have:

$$2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$$

Proof.

Basic case
We test for $n = 1$. Indeed, we have $2^1 = 2^2 - 2$.

Hypothesis
We assume that the formula holds for $n = k$:

$$\sum_{i=1}^{k} 2^i = 2^{k+1} - 2.$$

Induction step
We prove that for $n = k + 1$, $\sum_{i=1}^{k+1} 2^i = 2^{k+2} - 2$.

Proof Methods

Example
Show that for \(n \in \mathbb{N} \) with \(n \geq 1 \) we have:

\[
2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2
\]

Proof.

Basic case We test for \(n = 1 \). Indeed, we have \(2^1 = 2^2 - 2 \).

Hypothesis We assume that the formula holds for \(n = k \):

\[
\sum_{i=1}^{k} 2^i = 2^{k+1} - 2.
\]

Induction step We prove that for \(n = k + 1 \), \(\sum_{i=1}^{k+1} 2^i = 2^{k+2} - 2 \).

- This can be proved as follows:
Proof Methods

Example
Show that for $n \in \mathbb{N}$ with $n \geq 1$ we have:

$$2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 2$$

Proof.

Basic case We test for $n = 1$. Indeed, we have $2^1 = 2^2 - 2$.

Hypothesis We assume that the formula holds for $n = k$:

$$\sum_{i=1}^{k} 2^i = 2^{k+1} - 2.$$

Induction step We prove that for $n = k + 1$, $\sum_{i=1}^{k+1} 2^i = 2^{k+2} - 2$.

This can be proved as follows:

$$\sum_{i=1}^{k+1} 2^i = \sum_{i=1}^{k} 2^i + 2^{k+1} \quad \text{assumption}$$

$$= (2^{k+1} - 2) + 2^{k+1} = 2^{k+2} - 2.$$
Exercise

Use **induction** again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.
Proof Methods

Exercise

Use **induction** again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.
Proof Methods

Exercise

Use induction again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.

Hypothesis We assume that the property holds for $n = k$, that is, $7^k - 1$ is divisible by 6.
Proof Methods

Exercise

Use **induction** again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.

Hypothesis We assume that the property holds for $n = k$, that is, $7^k - 1$ is divisible by 6.

Induction step We prove that it also holds for $n = k + 1$, that is, $7^{k+1} - 1$ is also divisible by 6.
Proof Methods

Exercise

Use induction again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.

Hypothesis We assume that the property holds for $n = k$, that is, $7^k - 1$ is divisible by 6.

Induction step We prove that it also holds for $n = k + 1$, that is, $7^{k+1} - 1$ is also divisible by 6.

- Indeed, $7^{k+1} - 1 = 7^{k+1} - 7 + 6 = 7 \cdot 7^k - 7 \cdot 1 + 6 = 7^{k+1} - 7 \cdot 1 + 6 = 7 \cdot (7^k - 1) + 6$
Proof Methods

Exercise

Use **induction** again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.

Hypothesis We assume that the property holds for $n = k$, that is, $7^k - 1$ is divisible by 6.

Induction step We prove that it also holds for $n = k + 1$, that is, $7^{k+1} - 1$ is also divisible by 6.

- Indeed, $7^{k+1} - 1 = 7^{k+1} - 7 + 6 = 7 \cdot 7^k - 7 \cdot 1 + 6$

 $= 7^{k+1} - 7 \cdot 1 + 6 = 7 \ast (7^k - 1) + 6$

- $(7^k - 1)$ is divisible by 6, according to hypothesis.
Exercise

Use **induction** again to show that for $n \in \mathbb{N}$ with $n \geq 1$, the number $7^n - 1$ is divisible by 6.

Proof.

Basic case We test for $n = 1$: $7^1 - 1 = 6$, which is clearly divisible by 6.

Hypothesis We assume that the property holds for $n = k$, that is, $7^k - 1$ is divisible by 6.

Induction step We prove that it also holds for $n = k + 1$, that is, $7^{k+1} - 1$ is also divisible by 6.

- Indeed, $7^{k+1} - 1 = 7^{k+1} - 7 + 6 = 7 \cdot 7^k - 7 \cdot 1 + 6$
 - $= 7^{k+1} - 7 \cdot 1 + 6 = 7 \star (7^k - 1) + 6$
 - $(7^k - 1)$ is divisible by 6, according to hypothesis.
 - Hence, $7 \star (7^k - 1) + 6$ clearly divisible by 6, being the sum of two entities that are both divisible by 6.
See you next week!